Skip to main content
Log in

Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Experimental results of femtosecond laser ablation of the metals copper, silver and tungsten are compared to simulations based on the two-temperature model. The comparison provides new information about the laser-heating process: For the noble metals (Cu, Ag), the energy transport via ballistic electrons must be included, while this effect is negligible for a transition metal (W). The comparison provides values for the range of ballistic electrons in the noble metals. The model calculation is also employed to investigate the dependence of the threshold fluence and melting depth on pulse duration. It is observed that for pulses shorter than approximately 1 ps the threshold fluence and melting depth are independent of the pulse duration, while they increase as τ 0.47 and τ 0.51, respectively, for pulses longer than ∼40 ps, in good agreement with approximate analytical expressions predicting a \(\sqrt{\tau}\) dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Corkum, F. Brundel, N.K. Sherman, T. Srinivasanrao, Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

  2. S. Reuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  3. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)

    Google Scholar 

  4. P. Balling, in Laser Cleaning II, ed. by D.M. Kane (Singapore, World Scientific, 2006)

    Google Scholar 

  5. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  6. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  7. K. Vestentoft, P. Balling, Appl. Phys. A 84, 207 (2006)

    Article  ADS  Google Scholar 

  8. B.H. Christensen, K. Vestentoft, P. Balling, Appl. Surf. Sci. 253, 6347 (2007)

    Article  ADS  Google Scholar 

  9. J.K. Chen, J.E. Beraun, J. Opt. A, Pure Appl. Opt. 5, 168 (2003)

    Article  ADS  Google Scholar 

  10. J. Yang, Y. Zhao, X. Zhu, Appl. Phys. A 89, 571 (2007)

    Article  ADS  Google Scholar 

  11. R. Fang, D. Zhang, H. Wei, Z. Li, F. Yang, Y. Gao, Laser Part. Beams 28, 157 (2010)

    Article  ADS  Google Scholar 

  12. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  13. V. Schmidt, W. Husinsky, G. Betz, Appl. Surf. Sci. 197–198, 145 (2002)

    Article  Google Scholar 

  14. H. Rogier, M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)

    Article  ADS  Google Scholar 

  15. W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor, Phys. Rev. Lett. 68, 2834 (1992)

    Article  ADS  Google Scholar 

  16. J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97 (2010)

    Article  ADS  Google Scholar 

  17. R.L. Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322 (2005)

    Article  ADS  Google Scholar 

  18. M. Hashida, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862 (2002)

    Article  Google Scholar 

  19. G.A. Mourou, D. Du, S.K. Dutta, V. Elner, R. Kurtz, P.R. Lichter, X. Liu, US Patent, 5,656,186 (1997)

  20. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  21. S.E. Kirkwood, Y.Y. Tsui, R. Fedosejevs, A.V. Brantov, V.Y. Bychenkov, Phys. Rev. B 79, 144120 (2009)

    Article  ADS  Google Scholar 

  22. P.S. Banks, M.D. Feit, A.M. Komashko, M.D. Perry, A.M. Rubenchik, B.C. Stuart, in High-Power Laser Ablation III ed. by C. Phipps et al., vol. 4065 (SPIE, Bellingham, 2000), p. 147. doi:10.1117/12.407345

    Google Scholar 

  23. D. Fisher, M. Fraenkel, Z. Zinamon, Z. Henis, E. Moshe, Y. Horovitz, E. Luzon, S. Maman, S. Eliezer, Laser Part. Beams 23, 391 (2005)

    Article  ADS  Google Scholar 

  24. S.-S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, Appl. Phys. A 69, 99 (1999)

    ADS  Google Scholar 

  25. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  26. D.A. Thomas, Z. Lin, L.V. Zhigilei, E.L. Gurevich, S. Kittel, R. Hergenröder, Appl. Surf. Sci. 255, 9605 (2009)

    Article  ADS  Google Scholar 

  27. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks-Cole, Belmont, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Balling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byskov-Nielsen, J., Savolainen, JM., Christensen, M.S. et al. Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations. Appl. Phys. A 103, 447–453 (2011). https://doi.org/10.1007/s00339-011-6363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6363-7

Keywords

Navigation