Skip to main content
Log in

Growth and characterization of InGaN nanodots hybrid with InGaN/GaN quantum wells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Uniform InGaN nanodots were successfully grown on SiO2 pretreated GaN surface. It was found that the InGaN nanodots were 20 nm in diameter and 5 nm in height, approximately. After the growth of two periods of InGaN/GaN quantum wells on the surface of InGaN nanodots, nanodot structure still formed in the InGaN well layer caused by the enhanced phase separation phenomenon. Dual-color emissions with different behavior were observed from photoluminescence (PL) spectrum of InGaN nanodots hybrid with InGaN/GaN quantum wells. A significant blueshift and a linewidth broadening were measured for the low-energy peak as the increase of PL excitation power, while a slight blueshift and a linewidth narrowing occurred for the high-energy peak. Accordingly, these two peaks were assigned to be from the In-rich nanodots and quantized state transition from the InGaN/GaN quantum wells with indium content, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Nakamura, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70, 981 (1996)

    ADS  Google Scholar 

  2. R. Seguin, S. Rodt, A. Strittmatter, L. Reibmann, T. Bartel, A. Hoffmann, D. Bimberg, E. Hahn, D. Gerthsen, Appl. Phys. Lett. 84, 4023 (2004)

    Article  ADS  Google Scholar 

  3. T. Bartel, M. Dworzak, M. Strassburg, A. Hoffmann, A. Strittmatter, D. Bimberg, Appl. Phys. Lett. 85, 1946 (2004)

    Article  ADS  Google Scholar 

  4. Y.L. Lai, C.P. Liu, T.H. Hsueh, Y.H. Lin, H.C. Chung, R.M. Lin, Z.Q. Chen, Nanotechnology 17, 4300 (2006)

    Article  ADS  Google Scholar 

  5. Y. Arakawa, T. Someya, K. Tachibana, Phys. Status Solidi, B Basic Res. 224, 1 (2001)

    Article  ADS  Google Scholar 

  6. D.J. Eaglessham, M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990)

    Article  ADS  Google Scholar 

  7. K. Tachibana, T. Someya, Y. Arakawa, Appl. Phys. Lett. 74, 383 (1999)

    Article  ADS  Google Scholar 

  8. R.A. Oliver, A.D. Briggs, M.J. Kappers, C.J. Humphreys, S. Yasin, J.H. Rice, J.D. Smith, R.A. Taylor, Appl. Phys. Lett. 83, 755 (2003)

    Article  ADS  Google Scholar 

  9. J. Wang, M. Nozaki, M. Lachab, Y. Ishikawa, R.S. Qhalid Fareed, T. Wang, M. Hao, S. Sakai, Appl. Phys. Lett. 75, 950 (1999)

    Article  ADS  Google Scholar 

  10. K. Tachibana, T. Someya, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 76, 3212 (2000)

    Article  ADS  Google Scholar 

  11. S. Tanaka, S. Iwai, Y. Aoyagi, Appl. Phys. Lett. 69, 4096 (1996)

    Article  ADS  Google Scholar 

  12. X.Q. Shen, S. Tanaka, S. Iwai, Y. Aoyagi, Appl. Phys. Lett. 72, 344 (1998)

    Article  ADS  Google Scholar 

  13. Q. Wang, T. Wang, J. Bai, A.G. Cullis, P.J. Parbrool, F. Ranalli, J. Appl. Phys. 103, 123522 (2008)

    Article  ADS  Google Scholar 

  14. S. Tanaka, J.S. Lee, P. Ramvall, H. Okagawa, Jpn. J. Appl. Phys. 42, L885 (2003)

    Article  ADS  Google Scholar 

  15. J.P. O’Neill, I.M. Ross, A.G. Cullis, T. Wang, P.J. Parbrook, Appl. Phys. Lett. 83, 1965 (2003)

    Article  ADS  Google Scholar 

  16. C.S. Kim, H.G. Kim, C.H. Hong, H.K. Cho, Appl. Phys. Lett. 87, 013502 (2005)

    Article  ADS  Google Scholar 

  17. S.Y. Karprov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1999)

    Google Scholar 

  18. A. Tabata, L.K. Teles, L.M.R. Scolfaro, L.R. Leite, A. Kharchenko, T. Frey, D.J. As, D. Schikora, K. Lischika, J. Furthmuller, F. Bechstedt, Appl. Phys. Lett. 80, 769 (2002)

    Article  ADS  Google Scholar 

  19. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, E. Alves, A.D. Sequeira, N. Franco, I.M. Watson, C.J. Deatcher, Appl. Phys. Lett. 80, 3913 (2002)

    Article  ADS  Google Scholar 

  20. I.K. Park, M.K. Kwon, S.H. Baek, Y.W. Ok, Y.S. Kim, Y.T. Moon, D.J. Kim, Appl. Phys. Lett. 87, 061906 (2005)

    Article  ADS  Google Scholar 

  21. J.H. Rice, R.A. Oliver, J.W. Robinson, J.D. Smith, R.A. Taylor, G.A.D. Briggs, M.J. Kappers, C.J. Humphreys, S. Yasin, Physica E 21, 546 (2004)

    Article  ADS  Google Scholar 

  22. S. Kumar, S. Kabi, D. Biswas, J. Appl. Phys. 104, 086102 (2008)

    Article  ADS  Google Scholar 

  23. Y. Narukawa, Y. Kavakami, S. Fujita, S. Fujita, S. Nakamura, Phys. Rev. B 55, R1938 (1997)

    Article  ADS  Google Scholar 

  24. C.A. Tran, R.F. Karlicek, M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M.G. Brown, J. Nering, I. Ferguson, R. Stall, J. Cryst. Growth 195, 397 (1998)

    Article  ADS  Google Scholar 

  25. Y. Nagamune, H. Watabe, M. Nishioka, Y. Arakawa, Appl. Phys. Lett. 67, 3257 (1995)

    Article  ADS  Google Scholar 

  26. T. Wang, D. Nakagawa, J. Wang, T. Sugahara, S. Sakai, Appl. Phys. Lett. 73, 3571 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Special Funds for Major State Basic Research Project (2011CB301900), National Nature Science Foundation of China (61176063, 60990311, 60820106003, 60906025, 60936004). The nature science foundation of Jiangsu province (BK2008019, BK2010385, BK2009255, BK2010178, BK2011436), the Research Funds from NJU-Yangzhou Institute of Optoelectronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G.F., Chen, P., Yu, Z.G. et al. Growth and characterization of InGaN nanodots hybrid with InGaN/GaN quantum wells. Appl. Phys. A 109, 337–341 (2012). https://doi.org/10.1007/s00339-012-7112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7112-2

Keywords

Navigation