Skip to main content
Log in

Absorption spectroscopy of uranium plasma for remote isotope analysis of next-generation nuclear fuel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To determine experimental conditions suitable for isotope analysis, we studied the plume dynamics of uranium. A uranium oxide sample was ablated by 2nd harmonic radiation from a Nd:YAG laser at a fluence of 0.5 J/cm2. The temporal evolution of the ablation plume was investigated in vacuum and helium environments. In vacuum, the flow velocity perpendicular to the sample surface was determined to be 2.7 km/s for neutral atoms and 4.0 km/s for singly charged atoms. These velocities are about 20 % lower than those of cerium measured under similar conditions. From the evolution of the plume in helium, we found that an observation time of 3–5 μs and an observation height of about 2.5 mm are most suited for obtaining higher sensitivity. Observation times less than 3 μs were unsuitable for precise isotope analysis since the spectral modifications arising from the Doppler splitting effect are different between the two uranium isotopes. Using the established conditions, we evaluated the calibration curve linearity, limit of detection, and precision for three samples having different abundances of 235U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Harnafi, B. Dubreuil, J. Appl. Phys. 69, 7565–7571 (1991)

    Article  ADS  Google Scholar 

  2. N.H. Cheung, Q.Y. Ying, J.P. Zheng, H.S. Kwok, J. Appl. Phys. 69, 6349–6353 (1991)

    Article  ADS  Google Scholar 

  3. D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 96–98, 131–138 (1996)

    Article  Google Scholar 

  4. R.A. Al-Wazzan, J.M. Hendron, T. Morrow, Appl. Surf. Sci. 99, 345–351 (1996)

    Article  ADS  Google Scholar 

  5. G.W. Martin, L.A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M.J. Lamb, T. Morrow, C.L.S. Lewis, Appl. Surf. Sci. 127–129, 710–715 (1998)

    Article  Google Scholar 

  6. B.A. Bushaw, M.L. Alexander, Appl. Surf. Sci. 127–129, 935–940 (1998)

    Article  Google Scholar 

  7. K. Sasaki, S. Matsui, H. Ito, K. Kadota, J. Appl. Phys. 92, 6471–6476 (2002)

    Article  ADS  Google Scholar 

  8. M. Miyabe, M. Oba, H. Iimura, K. Akaoka, Y. Maruyama, I. Wakaida, Appl. Phys. A 101, 65–70 (2010)

    Article  ADS  Google Scholar 

  9. M. Miyabe, M. Oba, H. Iimura, K. Akaoka, Y. Maruyama, I. Wakaida, K. Watanabe, AIP Conf. Proc. 1104, 30–35 (2009)

    Article  ADS  Google Scholar 

  10. E. Stoffels, P. van de Weijer, J. van der Mullen, Spectrochim. Acta B 46, 1459–1470 (1991)

    Article  ADS  Google Scholar 

  11. J.P. Singh, F.-Y. Yueh, H. Zhang, K.P. Carney, Recent Res. Dev. Appl. Spectrosc. 2, 59–67 (1999)

    Google Scholar 

  12. X.K. Shen, Y.F. Lu, Appl. Opt. 47, 1810–1815 (2008)

    Article  ADS  Google Scholar 

  13. A. Sarkar, D. Alamelu, S. Aggarwal, Talanta 78, 800–804 (2009)

    Article  Google Scholar 

  14. M. Joseph, N. Sivakumar, P. Manoravi, High Temp., High Press. 34, 411–424 (2002)

    Article  Google Scholar 

  15. W. Pietsch, A. Petit, A. Briand, Spectrochim. Acta B 53, 751–761 (1998)

    Article  ADS  Google Scholar 

  16. C.A. Smith, M.A. Martinez, D.K. Veirs, D.A. Cremers, Spectrochim. Acta B 57, 929–937 (2002)

    Article  ADS  Google Scholar 

  17. F.R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, M. Sabsabi, J. Anal. At. Spectrom. 26, 536–541 (2011)

    Article  Google Scholar 

  18. X. Mao, A.A. Bol’shakov, I. Choi, C.P. McKay, D.L. Perry, O. Sorkhabi, R.E. Russo, Spectrochim. Acta B 66, 767–775 (2011)

    Article  ADS  Google Scholar 

  19. D.A. Cremers, A. Beddingfield, R. Smithwick, R.C. Chinni, C.R. Jones, B. Beardsley, L. Karch, Appl. Spectrosc. 66, 250–261 (2012)

    Article  ADS  Google Scholar 

  20. A. Quentmeier, M. Bolshov, K. Niemax, Spectrochim. Acta B 56, 45–55 (2001)

    Article  ADS  Google Scholar 

  21. H. Liu, A. Quentmeier, K. Niemax, Spectrochim. Acta B 57, 1611–1623 (2002)

    Article  ADS  Google Scholar 

  22. M. Miyabe, M. Oba, M. Kato, I. Wakaida, K. Watanabe, J. Nucl. Sci. Technol. 43, 305–310 (2006)

    Article  Google Scholar 

  23. L.V. Berzins, T.M. Anklam, F. Chambers, S. Galanti, C.A. Haynam, E.F. Worden, Surf. Cat. Technol. 76–77, 675–680 (1995)

    Google Scholar 

  24. M. Kurata-Nishimura, Y. Matsuo, T. Kobayashi, T. Kato, Y. Hayashizaki, J. Kawai, Appl. Phys. A 92, 1047–1050 (2008)

    Article  ADS  Google Scholar 

  25. G.P. Gupta, B.M. Suri, Appl. Surf. Sci. 230, 398–403 (2004)

    Article  ADS  Google Scholar 

  26. J. Maul, S. Karpuk, G. Huber, Phys. Rev. B 71, 045428 (2005)

    Article  ADS  Google Scholar 

  27. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Phys. Rev. E 66, 066406 (2002)

    Article  ADS  Google Scholar 

  28. J. Blaise, L.J. Radziemski Jr., J. Opt. Soc. Am. 66, 644–659 (1976)

    Article  ADS  Google Scholar 

  29. T. Hirata, J. Anal. At. Spectrom. 12, 1337–1342 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Present study is the result of “Development of laser remote analysis for next generation nuclear fuel and applied study by MOX sample” entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Miyabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyabe, M., Oba, M., Iimura, H. et al. Absorption spectroscopy of uranium plasma for remote isotope analysis of next-generation nuclear fuel. Appl. Phys. A 112, 87–92 (2013). https://doi.org/10.1007/s00339-012-7181-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7181-2

Keywords

Navigation