Skip to main content
Log in

Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the joining of different glass types with dissimilar optical, thermal and mechanical properties by ultrashort laser welding at high repetition rates. Femtosecond laser pulses were focused at the interface of two optically contacted transparent samples. Using nonlinear absorption processes and heat accumulation of successive pulses, we achieved strong bonds between the samples. We used a three-point bending test to determine the breaking strength. With this technique, we achieved for instance for a borosilicate glass a breaking strength of up to 95 % of the bulk material. In addition, we even welded different material combinations. Although the welded glasses exhibit different thermal and mechanical properties, we obtained breaking strengths which are comparable to the utilized bulk materials. Using Raman spectroscopy we mapped the laser-processed material along the welded interface. Thereby, we determined that the welds consist of a mixture of both species, which is formed during the laser induced melting of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.T. Gulati, M.J. Edwards, Crit. Rev. Opt. Sci. Technol. 67, 107 (1997)

    Google Scholar 

  2. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, Mater. Res. Soc. Bull. 31, 620 (2006)

    Article  Google Scholar 

  3. S. Nolte, M. Will, J. Burghoff, A. Tünnermann, J. Mod. Opt. 51, 2533 (2004)

    Article  ADS  Google Scholar 

  4. J. Haisma, G.A.C.M. Spierings, Mater. Sci. Eng. R 37, 1 (2002)

    Article  Google Scholar 

  5. M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, J. Appl. Phys. 60, 2987 (1986)

    Article  ADS  Google Scholar 

  6. G. Kalkowski, M. Rohde, S. Risse, R. Eberhardt, A. Tünnermann, ECS Trans. 33, 349 (2010)

    Article  Google Scholar 

  7. H.Y. Wang, R.S. Foote, S.C. Jacobson, J.H. Schneibel, J.M. Ramsey, Sens. Actuators B, Chem. 45, 199 (1997)

    Article  Google Scholar 

  8. C. Luo, L. Lin, Sens. Actuators A, Phys. 97, 398 (2002)

    Article  Google Scholar 

  9. C.B. Schaffer, A. Brodeuer, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001)

    Article  ADS  Google Scholar 

  10. S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W. Chen, S. Ho, P.R. Herman, Opt. Express 16, 9443 (2008)

    Article  ADS  Google Scholar 

  11. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, F. Yoshino, J. Laser Micro Nanoeng. 2, 57 (2007)

    Article  Google Scholar 

  12. T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 44, 687 (2005)

    Article  ADS  Google Scholar 

  13. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Appl. Phys. Lett. 89, 021106 (2006)

    Article  ADS  Google Scholar 

  14. S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A, Mater. Sci. Process. 103, 257 (2011)

    Article  ADS  Google Scholar 

  15. D. Hélie, M. Bégin, F. Lacroix, R. Vallée, Appl. Opt. 51, 2098 (2012)

    Article  ADS  Google Scholar 

  16. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, K. Itoh, Appl. Phys. Express 1, 082601 (2008)

    Article  ADS  Google Scholar 

  17. R. Demmig, Repetitorium Technische Mechanik, Festigkeitslehre, vol. 2 (Demmig, Darmstadt, 1991)

    Google Scholar 

  18. www.schott.com, 20 August 2012

  19. J. Haisma, N. Hattu, J.T.C.M. Pulles, E. Steding, J.C.G. Vervest, Appl. Opt. 46, 6793 (2007)

    Article  ADS  Google Scholar 

  20. T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, Jpn. J. Appl. Phys. 51, 102403 (2012)

    Article  ADS  Google Scholar 

  21. H. Zheng, C.L. Gnian, Opt. Lasers Eng. 41, 791 (2004)

    Article  Google Scholar 

  22. D.J. Little, M. Ams, S. Gross, P. Dekker, C.T. Miese, A. Fuerbach, M.J. Withford, J. Raman Spectrosc. 42, 715 (2011)

    Article  ADS  Google Scholar 

  23. P. Colomban, A. Tournie, L. Bellot-Gurlot, J. Raman Spectrosc. 37, 841 (2006)

    Article  ADS  Google Scholar 

  24. M.F. Best, R.A. Condrate, J. Mater. Sci. Lett. 4, 994 (1985)

    Article  Google Scholar 

  25. W. Hutton, J.S. Thorp, J. Mater. Sci. 20, 542 (1985)

    Article  ADS  Google Scholar 

  26. B. Mysen, D. Neuville, Geochim. Cosmochim. Acta 59, 325 (1995)

    Article  ADS  Google Scholar 

  27. D.Y. Smith, C.E. Black, C.C. Homes, E. Shiles, Phys. Status Solidi C 4, 838 (2007)

    Article  ADS  Google Scholar 

  28. O.S. Dymshits, A.A. Zhilin, V.I. Petrov, M.Ya. Tsenter, T.I. Chuvaeva, A.V. Sahshki, V.V. Golubkov, U. Kang, K.-H. Lee, Glass Phys. Chem. 28, 66 (2002)

    Article  Google Scholar 

  29. L.I. Berezhinsky, V.P. Maslov, B.K. Serdega, V.V. Tetyorkin, V.A. Yukhymchuk, J. Eur. Ceram. Soc. 26, 3825 (2006)

    Article  Google Scholar 

  30. T.I. Chuvaeva, O.S. Dymshits, V.I. Petrov, M.Ya. Tsenter, A.A. Zhilin, V.V. Golubkov, J. Non-Cryst. Solids 243, 244 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Dr. K. Richardson from the CREOL, University of Central Florida for fruitful discussions. We thank Krystyna Drozdowicz-Tomsia from the Macquarie Photonics Research Centre of the Macquarie University Sydney for the introduction to Raman analysis. We also acknowledge G. Kalkowski and G. Leibeling from the Fraunhofer Institute for Applied Optics and Precision Engineering for their support in sample preparation and analysis. Sören Richter acknowledges the Hans L. Merkle Stiftung for support. This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG, Leibniz program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S., Zimmermann, F., Döring, S. et al. Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy. Appl. Phys. A 110, 9–15 (2013). https://doi.org/10.1007/s00339-012-7478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7478-1

Keywords

Navigation