Skip to main content
Log in

Detection of buried layers in silicon devices using LIBS during hole drilling with femtosecond laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond laser micromachining together with Laser Induced Breakdown Spectroscopy (LIBS) allows us to drill precise hole in materials to internal buried layers as well as characterize the materials while drilling. We report detection of a metal layer buried deep inside silicon by creating an access hole through the semiconductor. We used 800 nm femtosecond laser pulses to carry out the drilling while monitoring the plasma emission with a spectrometer system. Higher drilling rates of 1 μm per shot were achieved using a Gaussian laser beam profile with peak fluences of 42 J/cm2. Lower drilling rates of 30 nm per pulse with better accuracy could be achieved using lower intensity flat top beam profiles at fluences of 1.4 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Momma, S. Nolte, B.N. Chichkov, F.V. Alvensleben, A. Tunnermann, Appl. Surf. Sci. 109/110, 15 (1997)

    Article  Google Scholar 

  2. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13(2), 459 (1996)

    Article  ADS  Google Scholar 

  3. D. Breitling, A. Ruf, F. Dausinger, Proc. SPIE 49, 5339 (2004)

    ADS  Google Scholar 

  4. K.H. Leitz, B. Redlingshofer, Y. Reg, A. Otto, M. Schmidt, Phys. Procedia 12, 230 (2011)

    Article  Google Scholar 

  5. T. Deshi, U.S. Patent 7,528,342 B2, 2009

  6. R. Fedosejsvs, Y. Tsui, Z. Chen, S. Banerjee, in Nano-Fabrication Techniques and Principles, ed. by M. Stepanova, S. Dew (Springer, Wien, 2012), pp. 301–319

    Google Scholar 

  7. J. Konig, T. Bauer, Proc. SPIE 7925, 792510 (2011)

    Article  Google Scholar 

  8. M.E. Fermann, A. Galvanauskas, G. Sucha, Ultrafast Lasers: Technology and Applications (Dekker, New York, 2003)

    Google Scholar 

  9. A. Zoubir, L. Shah, K. Richardson, M. Richardson, Appl. Phys. A 77, 311 (2003)

    ADS  Google Scholar 

  10. C.S. Nielsen, P. Balling, J. Appl. Phys. 99, 093101 (2006)

    Article  ADS  Google Scholar 

  11. L. Jiao, E.Y.K. Ng, L.M. Wee, H. Zheng, Adv. Mater. Res. 74, 273 (2009)

    Article  Google Scholar 

  12. G. Kamlage, T. Bauer, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 307 (2003)

    ADS  Google Scholar 

  13. X. Zhu, D.M. Villeneuve, A.Yu. Naumov, S. Nikumb, P.B. Corkum, Appl. Surf. Sci. 152, 138 (1999)

    Article  ADS  Google Scholar 

  14. A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)

    Article  ADS  Google Scholar 

  15. S. Döring, S. Richter, A. Tünnermann, S. Nolte, Appl. Phys. A 105, 69 (2011)

    Article  ADS  Google Scholar 

  16. S. Döring, S. Richter, S. Nolte, A. Tünnermann, Opt. Express 18(19), 20395 (2010)

    Article  Google Scholar 

  17. S. Döring, S. Richter, A. Tünnermann, S. Nolte, Proc. SPIE 8247, 824717 (2012)

    Article  Google Scholar 

  18. A. Luft, U. Franz, A. Emsermann, J. Kaspar, Appl. Phys. A 63, 93 (1996)

    Article  ADS  Google Scholar 

  19. A. Michalowski, D. Walter, F. Dausinger, T. Graf, J. Laser Micro Nanoeng. 3, 211 (2008)

    Article  Google Scholar 

  20. T.V. Kononenko, S.M. Klimentov, S.V. Garnov, V.I. Konov, D. Breitling, C. Föhl, A. Ruf, J. Radtke, F. Dausinger, Proc. SPIE 4426, 108 (2002)

    Article  ADS  Google Scholar 

  21. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F.V. Alvensleben, H. Welling, Appl. Phys. A 68(5), 563 (1999)

    Article  ADS  Google Scholar 

  22. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A.T. unnermann, Opt. Express 16(12), 8958 (2008)

    Article  ADS  Google Scholar 

  23. J. Dean, P. Forrester, M. Bercx, D. Graper, L. McKinney, F. Frank, M. Nantel, R. Marjoribanks, Proc. SPIE 6343, 63432A (2006)

    Article  Google Scholar 

  24. P.R. Herman, R. Marjoribanks, A. Oettl, U.S. Patent 6,552,301 B2, 2003

  25. L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)

    Article  ADS  Google Scholar 

  26. X. Zhao, Y.C. Shin, Appl. Phys. A 104, 713 (2011)

    Article  ADS  Google Scholar 

  27. D.R. Anderson, C.W. McLeod, T. English, A.T. Smith, Appl. Spectrosc. 49(6), 691 (1995)

    Article  ADS  Google Scholar 

  28. V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenroder, J. Anal. At. Spectrom. 16, 616 (2001)

    Article  Google Scholar 

  29. Virginia Semiconductor, Inc., Wet chemical etching and cleaning of silicon, January 2003 report

  30. J. Bonse, K.W. Brzezinka, A.J. Meixner, Appl. Surf. Sci. 221, 215 (2004)

    Article  ADS  Google Scholar 

  31. S.E. Kirkwood, Ph.D. Thesis, University of Alberta (2007)

  32. D.J. Hwang, C.P. Grigoropoulos, T.Y. Choi, J. Appl. Phys. 99, 083101 (2006)

    Article  ADS  Google Scholar 

  33. P.S. Banks, M.D. Fiet, A.M. Rubenchik, B.C. Stuart, M.D. Perry, Appl. Phys. A 69(suppl.), S377 (1999)

    Article  ADS  Google Scholar 

  34. A. Ruf, P. Berger, F. Dausinger, H. Hugel, J. Phys. D, Appl. Phys. 34, 2918 (2001)

    Article  ADS  Google Scholar 

  35. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14(10), 2716 (1997)

    Article  ADS  Google Scholar 

  36. E.D. Palik, Handbook of Optical Constants of Solid, vol. 1 (Academic Press, San Diego, 1985), p. 554

    Google Scholar 

  37. S. Lee, D. Yang, S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008)

    Article  ADS  Google Scholar 

  38. D.P. Korfiatis, K.A.Th. Thoma, J.C. Vardaxoglou, Appl. Surf. Sci. 255, 7605 (2009)

    Article  ADS  Google Scholar 

  39. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  40. M.T. Taschuk, Ph.D. Thesis, University of Alberta (2007)

Download references

Acknowledgements

The authors wish to acknowledge funding for this research from the Canadian Institute for Photonic Innovations and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S.P., Chen, Z., Utkin, I. et al. Detection of buried layers in silicon devices using LIBS during hole drilling with femtosecond laser pulses. Appl. Phys. A 111, 791–798 (2013). https://doi.org/10.1007/s00339-013-7648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7648-9

Keywords

Navigation