Skip to main content

Advertisement

Log in

ZnO/TiO2 core–shell nanowire arrays for enhanced dye-sensitized solar cell efficiency

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a new method of synthesizing ZnO/TiO2 core–shell nanowire (NW) arrays for the fabrication of dye-sensitized solar cells (DSSCs). Vertically aligned ZnO NW arrays were obtained on Si substrates, and modified by a TiO2 shell in order to solve the recombination problems via a cost-effective spin-coating method. The structure of the ZnO/TiO2 composite NW arrays was characterized. The experimental results indicate that the TiO2 shell enhances the performance of the DSSCs, through improving the stability of the ZnO NWs and decreasing the recombination of photogenerated electrons on the NW surface. The highest overall conversion efficiency of the cell reaches about 3.0 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Gratzel, J. Photochem. Photobiol. A 164(1–3), 3 (2004)

    Article  Google Scholar 

  2. A. Hagfeldt, M. Gratzel, Acc. Chem. Res. 33(5), 269 (2000)

    Article  Google Scholar 

  3. B. O’Regan, M. Gratzel, Nature 353(24), 737 (1991)

    Article  ADS  Google Scholar 

  4. L. Lin, J.M. Lin, J.H. Wu, Mater. Res. Innov. 14(5), 370 (2010)

    Article  Google Scholar 

  5. H.-H. Wang, C. Su, H.-S. Chen, J. Nanomater. 2011, 1 (2011)

    Google Scholar 

  6. C. Xu, P.H. Shin, L. Cao, Chem. Mater. 22(1), 143 (2010)

    Article  Google Scholar 

  7. N. Naseri, M. Yousefi, A.Z. Moshfegh, Sol. Energy 85, 1972 (2011)

    Article  Google Scholar 

  8. Z.L. Wang, J. Phys.: Condens. Matter 16(25), R829 (2004)

    ADS  Google Scholar 

  9. R.C. Pawar, J.S. Shaikh, A.A. Babar, P.M. Dhere, P.S. Patil, Sol. Energy 85(5), 1119 (2011)

    Article  Google Scholar 

  10. G. Sahu, K. Wang, S.W. Gordon, W. Zhou, M.A. Tarr, RSC Adv. 2(9), 3791 (2012)

    Article  Google Scholar 

  11. G. Sahu, S.W. Gordon, M.A. Tarr, RSC Adv. 2(2), 573 (2012)

    Article  Google Scholar 

  12. H.-W. Wang, C.-F. Ting, M.-K. Hung, C.-H. Chiou, Y.-L. Liu, Z. Liu, K.R. Ratinac, S.P. Ringer, Nanotechnology 20(5), 1 (2009)

    Article  Google Scholar 

  13. J. Chung, J. Myoung, J. Oh, S. Lim, J. Phys. Chem. C 114(49), 21360 (2010)

    Article  Google Scholar 

  14. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z. Wang, Nanotechnology 21(40), 405203 (2010)

    Article  Google Scholar 

  15. S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, S.P. Raj, Sol. Energy 85(9), 1787 (2011)

    Article  Google Scholar 

  16. L. Lu, R. Li, K. Fan, T. Peng, Sol. Energy 84(5), 844 (2010)

    Article  Google Scholar 

  17. D. Bi, F. Wu, W. Yue, Q. Qu, Q. Cui, Z. Qiu, C. Liu, W. Shen, M. Wang, Sol. Energy 85(11), 2819 (2011)

    Article  Google Scholar 

  18. K. Wang, J.J. Chen, Z.M. Zeng, J. Tarr, W.L. Zhou, Y. Zhang, Y.F. Yan, C.S. Jiang, J. Pern, A. Mascarenhas, Appl. Phys. Lett. 96(12), 123105 (2010)

    Article  ADS  Google Scholar 

  19. Y.-H. Lai, C.-Y. Lin, H.-W. Chen, J.-G. Chen, C.-W. Kung, R. Vittal, K.-C. Ho, J. Mater. Chem. 20(42), 2379 (2010)

    Google Scholar 

  20. P. Atienzar, T. Ishwara, B.N. Illy, M.P. Ryan, B.C. O’Regan, J.R. Durrant, J. Nelson, J. Phys. Chem. Lett. 1(4), 708 (2010)

    Article  Google Scholar 

  21. K. Park, Q. Zhang, B.B. Garcia, Y.-H. Jeong, X. Zhou, G. Cao, Adv. Mater. 22(21), 2329 (2010)

    Article  Google Scholar 

  22. A. Qurashi, M.F. Hossain, M. Faiz, N. Tabet, M.W. Alam, N.K. Reddy, J. Alloys Compd. 503(2), L40 (2010)

    Article  Google Scholar 

  23. Y. Yang, D.S. Kim, Y. Qin, A. Berger, R. Scholz, H. Kim, M. Knez, U. Goesele, J. Am. Chem. Soc. 131(39), 13920 (2009)

    Article  Google Scholar 

  24. W.I. Park, J. Yoo, D.W. Kim, G.C. Yi, M. Kim, J. Phys. Chem. B 110(4), 1516 (2006)

    Article  Google Scholar 

  25. M. Wang, C. Huang, Y. Cao, Appl. Phys. Lett. 94(26), 263506 (2009)

    Article  ADS  Google Scholar 

  26. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84(4), 2287 (1998)

    Article  ADS  Google Scholar 

  27. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78(16), 2285 (2001)

    Article  ADS  Google Scholar 

  28. Y. Feng, X. Ji, J. Duan, J. Zhu, J. Jiang, H. Ding, G. Meng, R. Ding, J. Liu, A. Hu, X. Huang, J. Solid State Chem. 190, 303 (2012)

    Article  ADS  Google Scholar 

  29. S.-J. Roh, R.S. Mane, S.-K. Min, W.J. Lee, C.D. Lokhande, S.H. Han, Appl. Phys. Lett. 89(25), 253512 (2006)

    Article  ADS  Google Scholar 

  30. O. von Roos, J. Appl. Phys. 49(6), 3503 (1978)

    Article  ADS  Google Scholar 

  31. K. Park, Q. Zhang, B.B. Garcia, G. Cao, J. Phys. Chem. C 115(11), 4927 (2011)

    Article  Google Scholar 

  32. A. Irannejad, K. Janghorban, O.K. Tan, H. Huang, C.K. Lim, P.Y. Tan, X. Fang, C.S. Chua, S. Maleksaeedi, S.M.H. Hejazi, M.M. Shahjamali, M. Ghaffari, Electrochim. Acta 58, 19 (2011)

    Article  Google Scholar 

  33. S. Yodyingyong, Q. Zhang, K. Park, C.S. Dandeneau, X.Y. Zhou, D. Triampo, G.Z. Cao, Appl. Phys. Lett. 96(7), 073115 (2010)

    Article  ADS  Google Scholar 

  34. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P.D. Yang, J. Phys. Chem. B 110(45), 22652 (2006)

    Article  Google Scholar 

  35. T.W. Hamann, O.K. Farha, J.T. Hupp, J. Phys. Chem. C 112(49), 19756 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 51072181) and the Doctoral Fund of the Ministry of Education of China under Grant No. 20090101110044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Zhu, L., Cai, F. et al. ZnO/TiO2 core–shell nanowire arrays for enhanced dye-sensitized solar cell efficiency. Appl. Phys. A 113, 67–73 (2013). https://doi.org/10.1007/s00339-013-7663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7663-x

Keywords

Navigation