Skip to main content
Log in

Roles of interface and oxide trap density in the kinked current behavior of Al/SiO2/Si(p) structures with ultra-thin oxides

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A clear current kinked phenomenon was observed in Al/SiO2/Si(p) structures with nanoscale (<2.5 nm) SiO2 in a forward biased region. It was found that the kinked points are dependent on oxide thickness and are not the same as flat-band voltages. A model regarding the oxide voltage dropping efficiency with the consideration of interface trap density (\(D_{\mathrm{it}}\)) and effective charge number density (\(Q_{\mathrm{eff}}/q\)) was proposed for the observation. It is noted that the kinked point is severely affected by the oxide quality and uniformity. However, Al/SiO2/Si(n) structures in a forward biased region do not exhibit this current kinked phenomenon because the dropping behavior of oxide is absolutely different from Al/SiO2/Si(p) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Suzuki, Y. Osaka, M. Hirose, Jpn. J. Appl. Phys. 21, L159 (1982)

    Article  ADS  Google Scholar 

  2. G. Fortunato, P. Migliorato, J. Appl. Phys. 68, 2463 (1990)

    Article  ADS  Google Scholar 

  3. C.A. Dimitriadis, N.A. Economou, P.A. Coxon, Appl. Phys. Lett. 59, 172 (1991)

    Article  ADS  Google Scholar 

  4. T.-J. King, M. Hack, I.-W. Wu, J. Appl. Phys. 75, 908 (1994)

    Article  ADS  Google Scholar 

  5. L. Colalongo, M. Valdinoci, A. Pellegrini, M. Rudan, IEEE Trans. Electron Devices 45, 826 (1998)

    Article  ADS  Google Scholar 

  6. K. Mutsumi, IEEE Electron Device Lett. 33, 845 (2012)

    Article  Google Scholar 

  7. K. Mutsumi, K. Takashi, T. Akihiro, K. Takeyoshi, Solid-State Electron. 69, 38 (2012)

    Article  Google Scholar 

  8. K. Mutsumi, H. Yasushi, IEEE Electron Device Lett. 34, 256 (2013)

    Article  Google Scholar 

  9. C.A. Dimitriadis, D.H. Tassis, N.A. Economou, A.J. Lowe, J. Appl. Phys. 74, 2919 (1993)

    Article  ADS  Google Scholar 

  10. H.S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S.-I. Nakamura, M. Saito, H. Iwai, Solid-State Electron. 41, 707 (1997)

    Article  ADS  Google Scholar 

  11. A. Schenk, G. Heiser, J. Appl. Phys. 81, 7900 (1997)

    Article  ADS  Google Scholar 

  12. H.Y. Yang, H. Niimi, G. Lucovsky, J. Appl. Phys. 83, 2327 (1998)

    Article  ADS  Google Scholar 

  13. L.F. Mao, C.H. Tan, M.Z. Xu, Microelectron. Reliab. 41, 927 (2001)

    Article  Google Scholar 

  14. S.M. Sze, J. Appl. Phys. 38, 2951 (1967)

    Article  ADS  Google Scholar 

  15. P.F. Schmidt, W. Michel, J. Electrochem. Soc. 104, 230 (1957)

    Article  Google Scholar 

  16. P.F. Schmidt, T.W. O’Keffe, J. Oroshnik, A.E. Owen, J. Electrochem. Soc. 112, 800 (1965)

    Article  Google Scholar 

  17. G.C. Jain, A. Prasad, B.C. Chakravarty, J. Electrochem. Soc. 126, 89 (1979)

    Article  Google Scholar 

  18. S.K. Sharma, B.C. Chakravarty, S.N. Singh, B.K. Das, D.C. Parashar, J. Rai, P.K. Gupta, J. Phys. Chem. Solids 50, 679 (1989)

    Article  ADS  Google Scholar 

  19. J.A. Bardwell, N. Draper, P. Schmuki, J. Appl. Phys. 79, 8761 (1996)

    Article  ADS  Google Scholar 

  20. V. Parkhutik, Electrochim. Acta 45, 3249 (2000)

    Article  Google Scholar 

  21. M. Grecea, C. Rotaru, N. Nastase, G. Craciun, J. Mol. Struct. 481, 607 (1999)

    Article  ADS  Google Scholar 

  22. K.J. Yang, C. Hu, IEEE Trans. Electron Devices 46, 1500 (1999)

    Article  ADS  Google Scholar 

  23. F. Mondon, S. Blonkowski, Microelectron. Reliab. 43, 1259 (2003)

    Article  Google Scholar 

  24. S.J. Ding, H. Hu, H.F. Lim, S.J. Kim, X.F. Yu, C. Zhu, M.F. Li, B.J. Cho, S.H. Chan, S.C. Rustagi, M.B. Yu, A. Chin, D.L. Kwong, IEEE Electron Device Lett. 24, 730 (2003)

    Article  ADS  Google Scholar 

  25. R. Castagn, A. Vapaillé, Surf. Sci. 28, 157 (1971)

    Article  ADS  Google Scholar 

  26. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), p. 331

    Google Scholar 

  27. V.G. Marathe, R. Paily, A. DasGupta, N. DasGupta, IEEE Trans. Electron Devices 52, 118 (2005)

    Article  ADS  Google Scholar 

  28. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), p. 57

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of Republic of China for supporting this work under Contract No. NSC99-2221-E-002-197-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenn-Gwo Hwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, HW., Hwu, JG. Roles of interface and oxide trap density in the kinked current behavior of Al/SiO2/Si(p) structures with ultra-thin oxides. Appl. Phys. A 115, 837–842 (2014). https://doi.org/10.1007/s00339-013-7873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7873-2

Keywords

Navigation