Skip to main content
Log in

Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cubic-structured NiO, Co3O4 and spinel-structured NiCo2O4 were synthesized via microwave route. The structural properties of NiO, Co3O4 and NiCo2O4 nanostructures were investigated by X-ray diffraction analysis, and it showed smaller crystallite size for NiO than Co3O4 and NiCo2O4 by using Williamson–Hall method. Flake-like and hexagonal plate-like morphologies were ascertained from HRSEM and TEM analyses. Optical properties of these materials were investigated by photoluminescence study, and it presents the band edge emission for all materials with supplementary emissions in visible region due to the presence of defects such as vacancy and interstitial. Raman and FTIR spectra provide the functional characteristics of NiO, Co3O4 and NiCo2O4 nanostructures. XPS measurement revealed the purity and composition of these nanostructures. Room temperature magnetic measurements were investigated using vibrating sample magnetometer. The low coercivity and remanent magnetization for NiO, Co3O4 and NiCo2O4 nanostructures confirmed that these nanoparticles exhibit a weak ferromagnetic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.-C. Liu, L.-B. Kong, C. Lu, X.-M. Li, Y.-C. Luo, L. Kang, ACS Appl. Mater. Interfaces 4, 4631 (2012)

    Article  Google Scholar 

  2. X. Batlle, A. Labarta, J. Phys. D Appl. Phys. 35, R15 (2002)

    Article  ADS  Google Scholar 

  3. G. Anandha Babu, G. Ravi, M. Navaneethan, M. Arivanandhan, Y. Hayakawa, J. Phys. Chem. C 118, 23335 (2014)

    Article  Google Scholar 

  4. Y.E. Roginskaya, O.V. Morozova, E.N. Lubnin, Y.E. Ulitina, G.V. Lopukhova, S. Trasatti, Langmuir 13, 4621 (1997)

    Article  Google Scholar 

  5. H.L. Huang, J.J. Lu, Appl. Phys. Lett. 75, 710 (1999)

    Article  ADS  Google Scholar 

  6. M. Salavati-Niasari, Z. Fereshteh, F. Davar, Polyhedron 28, 1065 (2009)

    Article  Google Scholar 

  7. Q. Li, L.S. Wang, B.Y. Hu, C. Yang, L. Zhou, L. Zhang, Mater. Lett. 61, 1615 (2007)

    Article  Google Scholar 

  8. L. Neel, in Low temperature physics, ed. by C. Dewitt, B. Dreyfus, P.D. de Gennes (Gordon and Beach, New York, 1962), p. 413

    Google Scholar 

  9. T. Ambrose, C.L. Chein, Phys. Rev. Lett. 76, 1743 (1996)

    Article  ADS  Google Scholar 

  10. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)

    Article  ADS  Google Scholar 

  11. Z. Chen, A. Xu, Y. Zhang, N. Gu, Curr. Appl. Phys. 10, 967 (2010)

    Article  ADS  Google Scholar 

  12. S.K. Meher, P. Justin, G. Ranga Rao, ACS Appl. Mater. Interfaces 3, 2063 (2011)

    Article  Google Scholar 

  13. L. Cui, J. Li, X.-G. Zhang, J. Appl. Electrochem. 39, 1871 (2009)

    Article  Google Scholar 

  14. Y. Hwa, W.-S. Kim, B.-C. Yu, S.-H. Hong, H.-J. Sohn, J. Phys. Chem. C 117, 7013 (2013)

    Article  Google Scholar 

  15. D. Patil, P. Patil, V. Subramanian, P.A. Joy, H.S. Potdar, Talanta 81, 37 (2010)

    Article  Google Scholar 

  16. T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki, M. Tsuji, Appl. Surf. Sci. 243, 214 (2005)

    Article  ADS  Google Scholar 

  17. A. Askarinejad, M. Bagherzadeh, A. Morsali, Appl. Surf. Sci. 256, 6678 (2010)

    Article  ADS  Google Scholar 

  18. X. Wang, L. Yu, P. Hu, F. Yuan, Cryst. Growth Des. 7, 2415 (2007)

    Article  Google Scholar 

  19. L. Xu, Y.S. Ding, C.H. Chen, L. Zhao, C. Rimkus, R. Joesten, S.L. Sui, Chem. Mater. 20, 308 (2008)

    Article  Google Scholar 

  20. I. Bilecka, M. Niederberger, Nanoscale 2, 1358 (2010)

    Article  ADS  Google Scholar 

  21. S.Q. Chen, Y. Wang, J. Mater. Chem. 20, 9735 (2010)

    Article  Google Scholar 

  22. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013)

    Article  Google Scholar 

  23. X. Liu, Y. Zuo, L. Li, X. Huang, G. Li, RSC Adv. 4, 6397 (2014)

    Article  Google Scholar 

  24. Z. Zhu, N. Wei, H. Liu, Z. He, Adv. Powder Technol. 21, 422 (2011)

    Article  Google Scholar 

  25. D. Ghosh, S. Giri, C.K. Das, ACS Sustain Chem. Eng. 1, 1135 (2013)

    Article  Google Scholar 

  26. Z. Wei, H. Qiao, H. Yang, C. Zhang, X. Yan, J. Alloys Compd. 479, 855 (2009)

    Article  Google Scholar 

  27. H. Jin, X. Gu, B. Hong, L. Lin, C. Wang, D. Jin, X. Peng, X. Wang, H. Ge, J. Phys. Chem. C 116, 13374 (2012)

    Article  Google Scholar 

  28. G. Anandha Babu, G. Ravi, Y. Hayakawa, M. Kumaresavanji, J. Magn. Magn. Mater. 375, 184 (2015)

    Article  ADS  Google Scholar 

  29. S. Mohseni Meybodi, S.A. Hosseini, M. Razaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem. 19, 841 (2012)

    Article  Google Scholar 

  30. S. Farhadi, J. Safabakhsh, P. Zaringhdam, J. Nanostruct. Chem. 3, 69 (2013)

    Article  Google Scholar 

  31. J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Nanoscale 3, 5103 (2011)

    Article  ADS  Google Scholar 

  32. J. Liu, X. Huang, Y. Li, J. Duan, H. Ai, Mater. Chem. Phys. 98, 523 (2006)

    Article  Google Scholar 

  33. Y. Ren, L. Gao, J. Am. Ceram. Soc. 93(11), 3560 (2010)

    Article  Google Scholar 

  34. X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Mater. Chem. 21, 9319 (2011)

    Article  Google Scholar 

  35. K.A. Gesheva, T.M. Ivanova, G. Bodurov, Prog. Org. Coat. 74, 635 (2012)

    Article  Google Scholar 

  36. A.C. Gandhi, C.Y. Huang, C.C. Yang, T.S. Chan, C.L. Cheng, Y.R. Ma, S.Y. Wu, Nanoscale Res. Lett. 6, 485 (2011)

    Article  ADS  Google Scholar 

  37. B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.-H. Sow, Chem. Mater. 20(10), 3360 (2008)

    Article  Google Scholar 

  38. S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song, X. Hu, J. Magn. Magn. Mater. 324, 2556 (2012)

    Google Scholar 

  39. G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, Xu Xu, X. Shen, RSC Adv. 2, 4236 (2012)

    Article  Google Scholar 

  40. Q. Jiao, M. Fu, C. You, Y. Zhao, H. Li, Inorg. Chem. 51, 11513 (2012)

    Article  Google Scholar 

  41. J. Patil, P. Chauhan, Mater. Charact. 61, 575 (2010)

    Article  Google Scholar 

  42. Y. Ding, Y. Wang, L.A. Su, M. Bellagamba, H. Zhang, Y. Lei, Biosens. Bioelectron. 26, 542 (2010)

    Article  Google Scholar 

  43. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, J. Phys. Chem. C 113, 4357 (2009)

    Article  Google Scholar 

  44. J. Liu, X. Huang, Y. Li, Q. Zhong, L. Ren, Mater. Lett. 60, 1354 (2006)

    Article  Google Scholar 

  45. L. Kumari, W.Z. Li, C.H. Vannoy, R.M. Leblanc, D.Z. Wang, Cryst. Res. Technol. 44, 495 (2009)

    Article  Google Scholar 

  46. Z.Y. Wu, C.M. Liu, L. Guo, R. Hu, M.I. Abbas, T.D. Hu, H.B. Xu, J. Phys. Chem. B 109, 2512 (2005)

    Article  Google Scholar 

  47. S. Mochizuki, T. Saito, Phys. B 404, 4850 (2009)

    Article  ADS  Google Scholar 

  48. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, Y.J. Qian, Phys. Chem. B 108, 16401 (2004)

    Article  Google Scholar 

  49. M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Inorg. Chim. Acta 362, 3691 (2009)

    Article  Google Scholar 

  50. T. Ozkaya, A. Baykal, M.S. Toprak, Y. Koseoglu, Z. Durmus, J. Magn. Magn. Mater. 321, 2145 (2009)

    Article  ADS  Google Scholar 

  51. E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, Phys. Rev. B 72, 132409 (2005)

    Article  ADS  Google Scholar 

  52. S.D. Tiwari, K.P. Rajeev, Phys. Rev. B 72, 104433 (2005)

    Article  ADS  Google Scholar 

  53. A.T. Ngo, P. Bonville, M.P. Pileni, Eur. Phys. J. B 9, 583 (1999)

    Article  ADS  Google Scholar 

  54. F. Mohandes, F. Davar, M. Salavati-Niasari, J. Magn. Magn. Mater. 322, 872 (2010)

    Article  ADS  Google Scholar 

  55. A.S. Bhatt, D.K. Bhat, C.-W. Tai, M.S. Santosh, Mater. Chem. Phys. 125, 347 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The one of the authors G. Anandha Babu gratefully acknowledge financial support for this study from DST, India under the scheme of INSPIRE Fellowship (Grant No. IF110040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandha Babu, G., Ravi, G. & Hayakawa, Y. Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures. Appl. Phys. A 119, 219–232 (2015). https://doi.org/10.1007/s00339-014-8951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8951-9

Keywords

Navigation