Skip to main content
Log in

Effect of calcination temperature on the properties of ZnO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanoparticles have been synthesized by sol–gel technique using zinc acetate dihydrate and diethanolamine as the precursor materials. The effects of calcination temperatures, i.e., 300, 500, 650, 700, and 750 °C, on the crystallinity, optical properties, and size of fabricated zinc oxide nanoparticles were investigated. X-ray diffraction (XRD) analysis reveals the hexagonal wurtzite structure. Crystallite size estimated by XRD data is about 20 nm and increased by increasing calcination temperature. Particle size was supported by particle size analyzer. Fourier transform infrared spectroscopy was used to classify molecular species through thermal decomposition. Its spectra show the ZnO nanoparticles formation in the wave number range 400–500 cm−1 while bonding was eliminated by heating process. Differential scanning calorimetry–thermal gravimetric analysis/differential thermal analysis curves indicate weight loss by thermal effect. Precursor decomposes at ~250 °C and mass loss took place from 100 to 500 °C. Ultraviolet–visible (UV–Vis) absorption was utilized to analyze the optical properties of samples. It is seen that the band gap value shows only very slight increase with increasing calcination temperature. Best band gap of 3.08 eV was measured for the sample prepared without calcination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Mats Lett. 65, 1797–1800 (2011)

    Article  Google Scholar 

  2. S. Peulon, D. Lincot, Adv. Mater. 8, 166–1166 (1996)

    Article  Google Scholar 

  3. J.-J. Wu, S.-C. Liu, J. Phys. Chem. B 106, 9546–9551 (2002)

    Article  Google Scholar 

  4. B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757–759 (2002)

    Article  ADS  Google Scholar 

  5. D. Sun, M. Wong, L. Sun, Y. Li, N. Miyatake, H.-J. Sue, J. Sol–Gel Sci. Technol. 43, 237–243 (2007)

    Article  Google Scholar 

  6. T. Thilagavathi, D. Geetha, Indian. J. Phys. 87, 747 (2013)

    Article  ADS  Google Scholar 

  7. Z. Hu, G. Oskam, R.L. Penn, N. Pesika, P.C. Searson, J. Phys. Chem. B 107, 3124–3130 (2003)

    Article  Google Scholar 

  8. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566–5572 (1998)

    Article  Google Scholar 

  9. G. Oskam, J. Sol–Gel. Sci. Technol. 37, 161–164 (2006)

    Article  Google Scholar 

  10. A. Ghosh, N. Kumari, S. Tewari, A. Bhattacharjee, Indian J. Phys. 87, 1099 (2013)

    Article  ADS  Google Scholar 

  11. S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, NanoScale 5, 9238–9246 (2013)

    Article  ADS  Google Scholar 

  12. D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M.A.C. Melo, E.A.G. Pineda, Mater. Chem. Phys. 115, 110–115 (2009)

    Article  Google Scholar 

  13. U.N. Maiti, S.F. Ahmed, M.K. Mitra, K.K. Chattopadhyay, Mater. Res. Bull. 44, 134–139 (2009)

    Article  Google Scholar 

  14. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, H. Cui, Vacuum 77, 57–62 (2004)

    Article  ADS  Google Scholar 

  15. R. Wahab, S.G. Ansari, Y.-S. Kim, H.-K. Seo, H.-S. Shin, Appl. Surf. Sci. 253, 7622–7626 (2007)

    Article  ADS  Google Scholar 

  16. M. Mazloumi, S. Taghavi, H. Arami, S. Zanganeh, A. Kajbafvala, M.R. Shayegh, S.K. Sadrnezhaad, J. Alloys Compd. 468, 303–307 (2009)

    Article  Google Scholar 

  17. K. Anna, P. Nina, K. Yuri, M. Meinhard, Z. Werner, G. Aharon, Ultrason. Sonochem. 15, 839–845 (2008)

    Article  Google Scholar 

  18. A. Kochanovska, I. Kraus, E.A.S. Hasam, Czech J. Phys. B21, 813 (1971)

    Article  ADS  Google Scholar 

  19. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  ADS  Google Scholar 

  20. Z.Z. Zhi, C.Y. Liu, S.B. Li, T.X. Zhang, M.Y. Lu, Z.D. Shen, W.X. Fan, J. Phys. D Appl. Phys. 36, 314 (2003)

    Article  Google Scholar 

  21. B.Z. Fang, J.Z. Yan, S.Y. Tan, Appl. Surf. Sci. 241, 303 (2005)

    Article  ADS  Google Scholar 

  22. B. Babita, D.K. Kishore, V.S. Manorama, Sens. Actuators, B 119, 676–682 (2006)

    Article  Google Scholar 

  23. N. Bouhssira, S. Abed, E. Tomasella, Appl. Surf. Sci. 252, 5594 (2006)

    Article  ADS  Google Scholar 

  24. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloy. Compd. 448, 21–26 (2008)

    Article  Google Scholar 

  25. J. Wang, L. Gao, Inorg. Chem. Commun. 6, 877 (2003)

    Article  Google Scholar 

  26. C. Chen, P. Liu, C. Lu, Chem. Eng. J. 144, 509 (2008)

    Article  Google Scholar 

  27. D. Raoufi, J. Lumin. 134, 213–219 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohra Nazir Kayani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayani, Z.N., Saleemi, F. & Batool, I. Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys. A 119, 713–720 (2015). https://doi.org/10.1007/s00339-015-9019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9019-1

Keywords

Navigation