Skip to main content
Log in

Characterization of nanocrystalline CuCo2O4 spinel prepared by sol–gel technique applicable to the SOFC interconnect coating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CuCo2O4 spinel nanopowders were synthesized by sol–gel method. The optimal values of pH and molar ratio of citric acid to metal ions (RC), and the influence of the calcination temperature and time were investigated. As-prepared materials were characterized by XRD, TGA, DSC, FE-SEM and electrical and coefficient of thermal expansion (CTE) measurements. It was found that pH = 4.5 and RC = 1 are the optimum conditions to produce pure CuCo2O4 nanopowders. The electrical conductivity was increased remarkably from 15.2 to 27.5 S cm−1 with an increase in temperature from 500 to 800 °C. Over the temperature range of 25–800 °C, the CTE of CuCo2O4 was 11.4 × 10−6 K−1 which is very close to the CTE of ferritic stainless steel (~12 × 10−6 K−1) used as solid oxide fuel cell interconnect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.A. Pint, The Long-Term Performance of Model Austenitic Alloys in Humid Air. NACE Corrosion (2004)

  2. J.H. Zhu, Y. Zhang, A. Basu, Z.G. Lu, M. Paranthaman, D.F. Lee, E.A. Payzant, Surf. Coat. Technol. 177, 65–72 (2004)

    Google Scholar 

  3. C. Lee, J. Bae, Thin Solid Films 516, 6432–6437 (2008)

    Article  ADS  Google Scholar 

  4. C.-L. Chu, J.-Y. Wang, S. Lee, Int. J. Hydrog. Energy 33, 2536–2546 (2008)

    Google Scholar 

  5. S. Lee, C.-L. Chu, M.-J. Tsai, J. Lee, Appl. Surf. Sci. 256, 1817–1824 (2010)

    ADS  Google Scholar 

  6. E.A. Lee, S. Lee, H.J. Hwang, J.-W. Moon, J. Power Sources 157, 709–713 (2006)

    Google Scholar 

  7. N. Shaigan, D.G. Ivey, W. Chen, J. Power Sources 185, 331–337 (2008)

    Google Scholar 

  8. N. Shaigan, D.G. Ivey, W. Chen, J. Power Sources 183, 651–659 (2008)

    Google Scholar 

  9. Z. Yang, G.-G. Xia, X.-H. Li, J.W. Stevenson, Int. J. Hydrog. Energy 32, 3648–3654 (2007)

    Google Scholar 

  10. H. Ebrahimifar, M. Zandrahimi, Surf. Coat. Technol. 206, 75–81 (2011)

    Google Scholar 

  11. B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, J. Power Sources 195, 7375–7379 (2010)

    Google Scholar 

  12. W. Zhang, J. Pu, B. Chi, L. Jian, J. Power Sources 196, 5591–5594 (2011)

    Google Scholar 

  13. Z.H. Bi, J.H. Zhu, J.L. Batey, J. Power Sources 195, 3605–3611 (2010)

    Google Scholar 

  14. A. Petric, H. Ling, J. Am. Ceram. Soc. 90, 1515–1520 (2007)

    Google Scholar 

  15. P. Paknahad, M. Askari, M. Ghorbanzadeh, J. Power Sources 266, 79–87 (2014)

    Google Scholar 

  16. P. Stefanov, I. Avramova, D. Stoichev, N. Radic, B. Grbic, T. Marinova, App. Surf. Sci. 245, 65–72 (2005)

    ADS  Google Scholar 

  17. W.M. Shaheen, A.A. Ali, Mater. Res. Bull. 36, 1703–1716 (2001)

    Google Scholar 

  18. M. Wojciechowska, M. Zielinski, A. Malczewska, W. Przystajko, M. Pietrowski, Appl. Catal. A: Gen. 298, 225–231 (2006)

    Google Scholar 

  19. J.P. Singh, R.N. Singh, J. N. Mater. Electrochem. Syst. 3, 131–139 (2000)

    Google Scholar 

  20. A.L. Rosa-Toro, R. Berenguer, C. Quijada, F. Montilla, E. Morallon, J.L. Vazquez, J. Phys. Chem. B 110, 24021–24029 (2006)

    Google Scholar 

  21. R. Ning, J. Tian, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, Am. Ceram. Soc. 29, 13146–13151 (2013)

    Google Scholar 

  22. E. Alizadeh-Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh, R. Rahimi, Powder Technol. 217, 330–339 (2012)

    Google Scholar 

  23. W. Wei, W. Chen, D.G. Ivey, Chem. Mater. 20, 1941–1947 (2008)

    Google Scholar 

  24. P. Boldrin, A.K. Hebb, A.A. Chaudhry, L. Otley, B. Thiebaut, P. Bishop, J.A. Darr, Ind. Eng. Chem. Res. 46, 4830–4838 (2007)

    Google Scholar 

  25. T. Baird, K.C. Campbell, P.J. Holliman, R.W. Hoyle, M. Huxam, D. Stirling, B.P. Williams, M. Morris, J. Mater. Chem. 9, 599–605 (1999)

    Google Scholar 

  26. G.Z. Gassan–zedeh, S.F. Seyidbayova, Appl. Catal. B 42, 359–367 (2003)

    Google Scholar 

  27. B. Cui, H. Lin, J.B. Li, X. Li, J. Yang, J. Tao, Adv. Func. Mater. 18, 1440–1472 (2008)

    Google Scholar 

  28. B. Chi, H. Lin, J. Li, N. Wang, J. Yang, Int. J. Hydrog. Energy 31, 1210–1214 (2006)

    Google Scholar 

  29. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Ríos, F.J. Berry, J. Solid State Chem. 153, 74–81 (2000)

    ADS  Google Scholar 

  30. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E.I. Ríos, H.M. Palmer, C. Greaves, F.J. Berry, J. Mater. Chem. 11, 3087–3309 (2001)

    Google Scholar 

  31. Y. Sharma, N. Sharma, G.V. Subba Rao, B.V.R. Chowdari, Adv. Func. Mater. 17, 2855–2861 (2007)

    Google Scholar 

  32. Z. Haijun, J. Xiaolin, Y. Yongjie, L. Zhanjie, Y. Daoyuan, L. Zhenzhen, Mater. Res. Bull. 39, 839–850 (2004)

    Google Scholar 

  33. P. Lavela, J.L. Tirado, C. Vidal-Abarca, Electrochim. Acta 52, 7986–7995 (2007)

    Google Scholar 

  34. X. Tan, G. Li, Y. Zhao, C. Hu, J. Alloy. Compd. 493, 55–63 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouyan Paknahad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paknahad, P., Askari, M. & Ghorbanzadeh, M. Characterization of nanocrystalline CuCo2O4 spinel prepared by sol–gel technique applicable to the SOFC interconnect coating. Appl. Phys. A 119, 727–734 (2015). https://doi.org/10.1007/s00339-015-9021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9021-7

Keywords

Navigation