Skip to main content
Log in

Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of interatomic interaction between graphene and 4H-SiC on their interfacial thermal transport is investigated by empirical molecular dynamics simulation. Two magnitudes of interfacial thermal conductance (ITC) improvement are observed for graphene/4H-SiC interface interacting through covalent bonds than through van der Waals interaction, which can be explained by the bond strength and the number of covalent bonds. Besides, it is found that the ITC of covalent graphene/C-terminated SiC is larger than that Si-terminated SiC, which is due to the stronger bond strength of C–C than that of C–Si. The effect of crystallinity of the substrate is studied, and the result shows that the ITC of graphene/a-SiC is higher than that of graphene/c-SiC. These results are crucial to the understanding of thermal transport across graphene interfaces, which are useful for thermal design in graphene-based transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A.K. Geim, Science 324(5934), 1530 (2009)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)

    ADS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8(3), 902 (2008)

    ADS  Google Scholar 

  4. J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9(7), 2730 (2009)

    ADS  Google Scholar 

  5. J. Zhang, X. Huang, Y. Yue, J. Wang, X. Wang, Phys. Rev. B 84(23), 235416 (2011)

    ADS  Google Scholar 

  6. K.M.F. Shahil, A.A. Balandin, Nano Lett. 12(2), 861 (2012)

    ADS  Google Scholar 

  7. M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J.C. Tsang, P. Avouris, Nano Lett. 9(5), 1883 (2009)

    ADS  Google Scholar 

  8. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Science 328(5975), 213 (2010)

    Article  ADS  Google Scholar 

  9. M.M. Sadeghi, I. Jo, L. Shi, Proc. Nat. Acad. Sci. 110(41), 16321 (2013)

    ADS  Google Scholar 

  10. J. Chen, G. Zhang, B. Li, Nanoscale 5(2), 532 (2013)

    Article  ADS  Google Scholar 

  11. Z.-Y. Ong, E. Pop, Phys. Rev. B 84(7), 075471 (2011)

    ADS  Google Scholar 

  12. B. Qiu, X. Ruan, Appl. Phys. Lett. 100(19), 193101 (2012)

    ADS  Google Scholar 

  13. Z. Chen, W. Jang, W. Bao, C.N. Lau, C. Dames, Appl. Phys. Lett. 95(16), 161910 (2009)

    ADS  Google Scholar 

  14. K.F. Mak, C.H. Lui, T.F. Heinz, Appl. Phys. Lett. 97(22), 221904 (2010)

    ADS  Google Scholar 

  15. Y.K. Koh, M.-H. Bae, D.G. Cahill, E. Pop, Nano Lett. 10(11), 4363 (2010)

    ADS  Google Scholar 

  16. X. Tang, S. Xu, J. Zhang, X. Wang, ACS Appl. Mater. 6(4), 2809 (2014)

    Google Scholar 

  17. X. Yu, L. Zhang, X. Song, T. Xi, Y. Zhao, J. Liu, X. Yang, M. Chen, P. Yang, Int. J. Mater. Struct. Intergr. 6(1), 65 (2012)

    Google Scholar 

  18. P.E. Hopkins, M. Baraket, E.V. Barnat, T.E. Beechem, S.P. Kearney, J.C. Duda, J.T. Robinson, S.G. Walton, Nano Lett. 12(2), 590 (2012)

    ADS  Google Scholar 

  19. C. Shu-Wei, K.N. Arun, J.B. Markus, J. Phys-Condens, Matter. 24(24), 245301 (2012)

    Google Scholar 

  20. L. Chen, Z. Huang, S. Kumar, Appl. Phys. Lett. 103(12), 123110 (2013)

    ADS  Google Scholar 

  21. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, Nat. Mater. 8(3), 203 (2009)

    ADS  Google Scholar 

  22. M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W. De Heer, Nat. Nanotechnol. 5(10), 727 (2010)

    ADS  Google Scholar 

  23. R. Mao, B.D. Kong, K.W. Kim, T. Jayasekera, A. Calzolari, M. Buongiorno, Nardelli. Appl. Phys. Lett. 101(11), 113111 (2012)

    ADS  Google Scholar 

  24. H. Wang, J. Gong, Y. Pei, Z. Xu, ACS Appl. Mater. 5(7), 2599 (2013)

    Google Scholar 

  25. A. Mattausch, O. Pankratov, Phys. Rev. Lett. 99(7), 076802 (2007)

    ADS  Google Scholar 

  26. R. Wilson, D.G. Cahill, Phys. Rev. Lett. 108(25), 255901 (2012)

    ADS  Google Scholar 

  27. S. Hertel, D. Waldmann, J. Jobst, A. Albert, M. Albrecht, S. Reshanov, A. Schöner, M. Krieger, H.B. Weber, Nat Commun 3, 957 (2012)

    ADS  Google Scholar 

  28. Z. Xu, M.J. Buehler, J Phys-Condens Mat. 24(47), 475305 (2012)

    ADS  Google Scholar 

  29. V. Sorkin, Y.W. Zhang, Phys. Rev. B 82(8), 085434 (2010)

    ADS  Google Scholar 

  30. M. Li, Y. Yue, RSC Adv. 4(44), 23010 (2014)

    Google Scholar 

  31. J. Tersoff, Phys. Rev. B 39(8), 5566 (1989)

    ADS  Google Scholar 

  32. J. Tersoff, Phys. Rev. B 49(23), 16349 (1994)

    ADS  Google Scholar 

  33. C. Tang, L. Meng, H. Xiao, J. Zhong, J. Appl. Phys. 103(6), 063505 (2008)

    ADS  Google Scholar 

  34. L. Lindsay, D.A. Broido, Phys. Rev. B 81(20), 205441 (2010)

    ADS  Google Scholar 

  35. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995)

    ADS  MATH  Google Scholar 

  36. S. Nosé, J. Chem. Phys. 81(1), 511 (1984)

    ADS  Google Scholar 

  37. A.M.V.D. Zande, R.A. Barton, J.S. Alden, C.S. Ruiz-Vargas, W.S. Whitney, P.H.Q. Pham, J. Park, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 10(12), 4869 (2010)

    ADS  Google Scholar 

  38. J.E. Huheey, E.A. Keiter, R.L. Keiter, O.K. Medhi, Inorganic chemistry: principles of structure and reactivity. (Pearson Education India, 2006), pp. A-21

  39. T. Luo, J.R. Lloyd, Adv. Funct. Mater. 22(12), 2495 (2012)

    Google Scholar 

  40. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61(3), 605 (1989)

    ADS  Google Scholar 

  41. B. Li, J. Lan, L. Wang, Phys. Rev. Lett. 95(10), 104302 (2005)

    ADS  Google Scholar 

  42. T.S. English, J.C. Duda, J.L. Smoyer, D.A. Jordan, P.M. Norris, L.V. Zhigilei, Phys. Rev. B 85(03), 035438 (2012)

    ADS  Google Scholar 

  43. J. Zhang, Y. Wang, X. Wang, Nanoscale 5(23), 11598 (2013)

    Article  ADS  Google Scholar 

  44. C.-C. Chen, Z. Li, L. Shi, S.B. Cronin, Appl. Phys. Lett. 104(8), 081908 (2014)

    ADS  Google Scholar 

  45. Y. Yue, J. Zhang, X. Wang, Small 7(23), 3324 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 51206124, No. 51428603) and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejiao Hu or Yanan Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, J., Hu, X. et al. Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate. Appl. Phys. A 119, 415–424 (2015). https://doi.org/10.1007/s00339-015-9066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9066-7

Keywords

Navigation