Skip to main content
Log in

Applications of nanoimprint lithography/hot embossing: a review

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This review concentrates on the applications of nanoimprint lithography (NIL) and hot embossing for the fabrications of nanolectronic devices, nanophotonic metamaterials and other nanostructures. Technical challenges and solutions in NIL such as nanofabrication of templates, removal of residual resist, pattern displacement in thermal NIL arising from thermal expansion are first discussed. In the nanofabrication of templates, dry etch in plasma for the formation of multi-step structures and ultra-sharp tip arrays in silicon, nanophotonic chiral structures with high aspect ratio in SiC are demonstrated. A bilayer technique for nondestructive removal of residual resist in thermal NIL is described. This process is successfully applied for the fabrication of T-shape gates and functional high electron mobility transistors. However, pattern displacement intrinsically existing in thermal NIL/hot embossing owing to different thermal expansions in the template and substrate, respectively, limits its further development and scale-up. Low temperature even room temperature NIL (RTNIL) was then proposed on HSQ, trying to eliminate the pattern distortion by avoiding a thermal loop in the imprint. But, considerable pressure needed in RTNIL turned the major attentions to the development of UV-curing NIL in UV-curable monomers at low temperature. A big variety of applications by low-temperature UV-curing NIL in SU-8 are described, including high-aspect-ratio phase gratings, tagging technology by nanobarcode for DNA sequencing, nanofluidic channels, nanophotonic metamaterials and biosensors. Hot embossing, as a parallel technique to NIL, was also developed, and its applications on ferroelectric polymers as well as metals are reviewed. Therefore, it is necessary to emphasize that this review is mainly attempted to review the applications of NIL/embossing instead of NIL technique advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114–3116 (1995)

    Article  ADS  Google Scholar 

  2. J. Haisma, M. Verheijen, K. Van Den Heuvel, J. vandenBer, J. Vac. Sci. Technol. B 14, 4124–4128 (1996)

    Article  Google Scholar 

  3. H.A. Biebuyck, N.B. Larsen, E. Delamarche, B. Michel, IBM J. Res. Dev. 41, 159–170 (1997)

    Article  Google Scholar 

  4. R. Hull, D. Longo, Development of a nanoscale printing technology for planar and curved surfaces, in Proceeding of the Tenth International Workshop on the Physics of Semiconductor Devices, vol. II, ed. by V. Kumar, S.K. Agarwal (Spie-Int Soc Optical Engineering, Bellingham, 2000), pp. 974–981

    Google Scholar 

  5. N.L. Jeon, J.M. Hu, G.M. Whitesides, M.K. Erhardt, R.G. Nuzzo, Adv. Mater. 10, 1466–1469 (1998)

    Article  Google Scholar 

  6. T. Ohzono, N. Fukuda, T. Nishikawa, M. Shimomura, Imprint of Honeycomb Pattern on PDMS Elastomer (World Scientific Publ Co Pte Ltd, Singapore, 2002)

    Google Scholar 

  7. L.R. Bao, X. Cheng, X.D. Huang, L.J. Guo, S.W. Pang, A.F. Yee, J. Vac. Sci. Technol. B 20, 2881–2886 (2002)

    Article  Google Scholar 

  8. X.D. Huang, L.R. Bao, X. Cheng, L.J. Guo, S.W. Pang, A.F. Yee, J. Vac. Sci. Technol. B 20, 2872–2876 (2002)

    Article  Google Scholar 

  9. H. Yoshikawa, J. Taniguchi, G. Tazaki, T. Zento, Microelectron. Eng. 112, 273–277 (2013)

    Article  Google Scholar 

  10. K.H. Hsu, P.L. Schultz, P.M. Ferreira, N.X. Fang, Nano Lett. 7, 446–451 (2007)

    Article  ADS  Google Scholar 

  11. S.Y. Chou, C. Keimel, J. Gu, Nature 417, 835–837 (2002)

    Article  ADS  Google Scholar 

  12. Y.C. Lee, C.Y. Chiu, C.H. Chen, J.H. Tsai, Microelectron. Eng. 87, 35–40 (2010)

    Article  Google Scholar 

  13. J.J. Dumond, H.Y. Low, J. Vac. Sci. Technol. B 30(010801), 1–28 (2012)

  14. N. Kooy, K. Mohamed, L.T. Pin, O.S. Guan, Nanoscale Res. Lett. 9(320), 1–13 (2014)

  15. E. Scherz, Kunstst. Plast. 23, 15 (1976)

    Google Scholar 

  16. P. Groning, A. Schneuwly, L. Schlapbach, M.T. Gale, J. Vac. Sci. Technol. A Vac. Surf. Films 14, 3043–3048 (1996)

    Article  ADS  Google Scholar 

  17. Y.L. Loo, R.L. Willett, K.W. Baldwin, J.A. Rogers, Appl. Phys. Lett. 81, 562–564 (2002)

    Article  ADS  Google Scholar 

  18. K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 47, 1493–1502 (2014)

    Article  Google Scholar 

  19. C.H. Lee, D.R. Kim, X.L. Zheng, ACS Nano 8, 8746–8756 (2014)

    Article  Google Scholar 

  20. E. Katzir, S. Yochelis, Y. Paltiel, S. Azoubel, A. Shimoni, S. Magdassi, Sens. Actuator B Chem. 196, 112–116 (2014)

    Article  Google Scholar 

  21. O. Kanoun, C. Muller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, A. Bouhamed, Sensors 14, 10042–10071 (2014)

    Article  Google Scholar 

  22. Z.Y. Fan, J.C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A.C. Ford, Y.L. Chueh, A. Javey, Adv. Mater. 21, 3730–3743 (2009)

    Article  Google Scholar 

  23. Y. Chen, D.S. Macintyre, E. Boyd, D. Moran, I. Thayne, S. Thoms, Microelectron. Eng. 67–8, 189–195 (2003)

    Article  Google Scholar 

  24. Y.F. Chen, J.R. Tao, X.Z. Zhao, Z. Cui, J. Microlithogr. Microfabr. Microsyst. 5, 1–3 (2006)

  25. M.M. Hossain, M. Gu, Laser Photon. Rev. 8, 233–249 (2014)

    Article  Google Scholar 

  26. H. Yoon, H. Lee, W.B. Lee, Korea Aust. Rheol. J. 26, 39–48 (2014)

    Article  Google Scholar 

  27. H.B. Lan, H.Z. Liu, J. Nanosci. Nanotechnol. 13, 3145–3172 (2013)

    Article  Google Scholar 

  28. E. Luong-Van, I. Rodriguez, H.Y. Low, N. Elmouelhi, B. Lowenhaupt, S. Natarajan, C.T. Lim, R. Prajapati, M. Vyakarnam, K. Cooper, J. Mater. Res. 28, 165–174 (2013)

    Article  ADS  Google Scholar 

  29. D.S. Macintyre, Y. Chen, D. Lim, S. Thoms, J. Vac. Sci. Technol. B 19, 2797–2800 (2001)

    Article  Google Scholar 

  30. L.J. Guo, J. Phys. D Appl. Phys. 37, R123–R141 (2004)

    Article  ADS  Google Scholar 

  31. M. Elsayed, O.M. Merkel, Nanomedicine 9, 349–366 (2014)

    Article  Google Scholar 

  32. C. Escobedo, Lab Chip 13, 2445–2463 (2013)

    Article  Google Scholar 

  33. Y. Chen, D. Macintyre, E. Boyd, D. Moran, I. Thayne, S. Thoms, J. Vac. Sci. Technol. B 20, 2887–2890 (2002)

    Article  Google Scholar 

  34. J.E. Slota, X.M. He, W.T.S. Huck, Nano Today 5, 231–242 (2010)

    Article  Google Scholar 

  35. Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, M. Kobayasi, J. Vac. Sci. Technol. B 20, 2867–2871 (2002)

    Article  Google Scholar 

  36. J. Lee, H.H. Park, K.B. Choi, G. Kim, H. Lim, Microelectron. Eng. 127, 72–76 (2014)

    Article  Google Scholar 

  37. W. Wu, B. Cui, X.Y. Sun, W. Zhang, L. Zhuang, L.S. Kong, S.Y. Chou, J. Vac. Sci. Technol. B 16, 3825–3829 (1998)

    Article  Google Scholar 

  38. W. Zhang, S.Y. Chou, Appl. Phys. Lett. 79, 845–847 (2001)

    Article  ADS  Google Scholar 

  39. A. Fuchs, M. Bender, U. Plachetka, L. Kock, T. Wahlbrink, H.D.B. Gottlob, J.K. Efavi, M. Moeller, M. Schmidt, T. Mollenhauer, C. Moormann, M.C. Lemme, H. Kurz, J. Vac. Sci. Technol. B 24, 2964–2967 (2006)

    Article  Google Scholar 

  40. N. Koo, M. Schmidt, T. Mollenhauer, C. Moormann, F. Schlachter, H. Kurz, Microelectron. Eng. 97, 85–88 (2012)

    Article  Google Scholar 

  41. H. Schmitt, B. Amon, S. Beuer, S. Petersen, M. Rommel, A.J. Bauer, H. Ryssel, Microelectron. Eng. 86, 636–638 (2009)

    Article  Google Scholar 

  42. J. Borghetti, Z.Y. Li, J. Straznicky, X.M. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, Proc. Natl. Acad. Sci. USA 106, 1699–1703 (2009)

    Article  ADS  Google Scholar 

  43. H.H. Cheng, J.K. Siaw, M.M. Alkaisi, The Fabrication of Metallic Nanotransistors (IEEE, New York, 2005)

    Google Scholar 

  44. H. Iwai, K. Yoshida, S. Heike, T. Hashizume, T. Shimomura, Jpn. J. Appl. Phys. 51(030204), 1–3 (2012)

  45. J. Li, S. Pud, D. Mayer, S. Vitusevich, Nanotechnology 25 (2014)

  46. J. Li, S.A. Vitusevich, M.V. Petrychuk, S. Pud, A. Offenhausser, B.A. Danilchenko, J. Appl. Phys. 114(203704), 1–13 (2013)

  47. Z.Y. Li, X.M. Li, D.A.A. Ohlberg, J. Straznicky, W. Wu, Z.N. Yu, J. Borghetti, W. Tong, D. Stewart, R.S. Williams, Fabrication and test of nano crossbar switches/MOSFET hybrid circuits by imprinting lithography, in Emerging Lithographic Technologies Xii, Pts 1 and 2, ed. by F.M. Schellenberg (Spie-Int Soc Optical Engineering, Bellingham, 2008)

    Google Scholar 

  48. X.G. Liang, S.J. Wi, ACS Nano 6, 9700–9710 (2012)

    Article  Google Scholar 

  49. I. Martini, J. Dechow, M. Kamp, A. Forchel, J. Koeth, Microelectron. Eng. 60, 451–455 (2002)

    Article  Google Scholar 

  50. H. Nakamura, A. Baba, T. Asano, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 39, 7080–7085 (2000)

    Article  Google Scholar 

  51. K. Tomioka, T. Fukui, J. Phys. D Appl. Phys. 47(394001), 1–13 (2014)

  52. X.T. Vu, R. GhoshMoulick, J.F. Eschermann, R. Stockmann, A. Offenhausser, S. Ingebrandt, Sens. Actuator B Chem. 144, 354–360 (2010)

    Article  Google Scholar 

  53. H. Abe, M. Yoneda, N. Fujlwara, Jpn. J. Appl. Phys. 47, 1435–1455 (2008)

    Article  ADS  Google Scholar 

  54. V.R. Agarwal, D.S. Rawal, H.P. Vyas, J. Electrochem. Soc. 152, G567–G576 (2005)

    Article  Google Scholar 

  55. M. Esashi, T. Ono, J. Phys. D Appl. Phys. 38, R223–R230 (2005)

    Article  ADS  Google Scholar 

  56. M. Irannejad, Z. Zhao, G. Jose, D.P. Steenson, A. Jha, Trans. Indian Ceram. Soc. 69, 207–221 (2010)

    Article  Google Scholar 

  57. G. Korotcenkov, B.K. Cho, Crit. Rev. Solid State Mat. Sci. 35, 153–260 (2010)

    Article  ADS  Google Scholar 

  58. S.J. Pearton, Int. J. Mod. Phys. B 8, 1781–1786 (1994)

    Article  ADS  Google Scholar 

  59. S.J. Pearton, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 40, 101–118 (1996)

    Article  Google Scholar 

  60. V.N. Popok, I. Barke, E.E.B. Campbell, K.H. Meiwes-Broer, Surf. Sci. Rep. 66, 347–377 (2011)

    Article  ADS  Google Scholar 

  61. M. Rahman, Defects Diffus. Semicond. 183–1, 61–75 (2000)

    Article  Google Scholar 

  62. P.H. Yih, V. Saxena, A.J. Steckl, Phys. Status Solidi B Basic Res. 202, 605–642 (1997)

    Article  ADS  Google Scholar 

  63. B.Q. Wu, A. Kumar, S. Pamarthy, J. Appl. Phys. 108(051101), 1–20 (2010)

  64. H.V. Jansen, M.J. de Boer, S. Unnikrishnan, M.C. Louwerse, M.C. Elwenspoek, J. Micromech. Microeng. 19 1–41 (2009)

  65. J.M. Kim, W.N. Carr, R.J. Zeto, L. Poli, J. Electrochem. Soc. 139, 1700–1705 (1992)

    Article  Google Scholar 

  66. I. Brodie, C.A. Spindt, Adv. Electron. Electron Phys. 83(83), 1–106 (1992)

    Article  Google Scholar 

  67. A. Boisen, O. Hansen, S. Bouwstra, J. Micromech. Microeng. 6, 58–62 (1996)

    Article  ADS  Google Scholar 

  68. Y.Q. Wang, D.W. van der Weide, J. Vac. Sci. Technol. B 23, 1582–1584 (2005)

    Article  Google Scholar 

  69. B. Tang, K. Sato, M.A. Gosalvez, Sens. Actuator A Phys. 188, 220–229 (2012)

    Article  Google Scholar 

  70. A.A. Tseng, Z. Li, J. Nanosci. Nanotechnol. 7, 2582–2595 (2007)

    Article  Google Scholar 

  71. J.R. Tao, Y.F. Chen, A. Malik, L. Wang, X.Z. Zhao, H.W. Li, Z. Cui, Microelectron. Eng. 78–79, 147–151 (2005)

    Article  Google Scholar 

  72. Y.X. Zhang, Y.W. Zhang, T.S. Sriram, R.B. Marcus, Appl. Phys. Lett. 69, 4260–4261 (1996)

    Article  ADS  Google Scholar 

  73. W.C. Liao, S.L.C. Hsu, Nanotechnology 18(065303), 1–5 (2007)

  74. H. Lee, G.Y. Jung, Microelectron. Eng. 77, 168–174 (2005)

    Article  Google Scholar 

  75. M.T. Li, L. Chen, S.Y. Chou, Appl. Phys. Lett. 78, 3322–3324 (2001)

    Article  ADS  Google Scholar 

  76. C. Peng, X.G. Liang, S.Y. Chou, Nanotechnology 20(185302) 1–3 (2009)

  77. C.A. Zorman, R.J. Parro, Phys. Status Solidi B Basic Solid State Phys. 245, 1404–1424 (2008)

    Article  ADS  Google Scholar 

  78. S.C. Ahn, S.Y. Hang, J.L. Lee, J.H. Moon, B.T. Lee, Met. Mater. Int. 10, 103–106 (2004)

    Article  Google Scholar 

  79. K.A. Lister, S. Thoms, D.S. Macintyre, C.D.W. Wilkinson, J.M.R. Weaver, B.G. Casey, J. Vac. Sci. Technol. B 22, 3257–3259 (2004)

    Article  Google Scholar 

  80. Y.F. Chen, Y. Zhou, G.H. Pan, E. Huq, B.R. Lu, S.Q. Xie, J. Wan, Z. Shu, X.P. Qu, R. Liu, S. Banu, S. Birtwell, L.D. Jiang, Microelectron. Eng. 85, 1147–1151 (2008)

    Article  Google Scholar 

  81. H. Jansen, M. de Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu, M. Elwenspoek, Microelectron. Eng. 35, 45–50 (1997)

    Article  Google Scholar 

  82. J.H. Leach, H. Morkoc, Y. Ke, R.P. Devaty, W.J. Choyke, Novel use of columnar porous silicon carbide structures as nanoimprint lithography stamps, in Silicon Carbide and Related Materials 2007, Pts 1 and 2, ed. by A. Suzuki, H. Okumura, T. Kimoto, T. Fuyuki, K. Fukuda, S. Nishizawa (Trans Tech Publications Ltd, Stafa-Zurich, 2009), pp. 871–874

    Google Scholar 

  83. Y. Nakada, K. Ninomiya, Y. Takaki, Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 45, L1241–L1243 (2006)

    Article  Google Scholar 

  84. X.Y. Sun, L. Zhuang, W. Zhang, S.Y. Chou, J. Vac. Sci. Technol. B 16, 3922–3925 (1998)

    Article  Google Scholar 

  85. C.H. Chen, J.P. Ibbetson, E.L. Hu, U.K. Mishra, Appl. Phys. Lett. 71, 494–496 (1997)

    Article  ADS  Google Scholar 

  86. B. Faircloth, H. Rohrs, R. Tiberio, R. Ruoff, R.R. Krchnavek, J. Vac. Sci. Technol. B 18, 1866–1873 (2000)

    Article  Google Scholar 

  87. Y. Chen, D.S. Macintyre, S. Thoms, Microelectron. Eng. 67–8, 245–251 (2003)

    Article  Google Scholar 

  88. Y. Chen, K. Peng, Z. Cui, Microelectron. Eng. 73, 278–281 (2004)

    Article  Google Scholar 

  89. J.W. Kim, U. Plachetka, C. Moormann, H. Kurz, Microelectron. Eng. 110, 403–407 (2013)

    Article  Google Scholar 

  90. F.T. Meng, G. Luo, I. Maximov, L. Montelius, Y. Zhou, L. Nilsson, P. Carlberg, B. Heidari, J.K. Chu, H.Q. Xu, Nanotechnology 22(185301) 1–6 (2011)

  91. L.J. Guo, P.R. Krauss, S.Y. Chou, Appl. Phys. Lett. 71, 1881–1883 (1997)

    Article  ADS  Google Scholar 

  92. D.J. Meyer, R. Bass, D.S. Katzer, D.A. Deen, S.C. Binari, K.M. Daniels, C.R. Eddy, Solid State Electron. 54, 1098–1104 (2010)

    Article  ADS  Google Scholar 

  93. Y. Chen, D. Macintyre, E. Boyd, D. Moran, I. Thayne, S. Thoms, Microelectron. Eng. 67, 189–195 (2003)

    Article  Google Scholar 

  94. D. Moran, E. Boyd, H. McLelland, K. Elgaid, Y. Chen, D. Macintyre, S. Thoms, C. Stanley, I. Thayne, Microelectron. Eng. 67, 769–774 (2003)

    Article  Google Scholar 

  95. D. Macintyre, Y. Chen, D. Gourlay, E. Boyd, D. Moran, X. Cao, K. Elgaid, C. Stanley, I. Thayne, S. Thoms, J. Vac. Sci. Technol. B 21, 2783–2787 (2003)

    Article  Google Scholar 

  96. L. Jiang, X. Wang, L.F. Chi, Small 7, 1309–1321 (2011)

    Article  Google Scholar 

  97. X. Liu, Z.Y. Ji, M. Liu, L.W. Shang, D.M. Li, Y.H. Dai, Chin. Sci. Bull. 56, 3178–3190 (2011)

    Article  Google Scholar 

  98. Z. Wang, R.B. Xing, X.H. Yu, Y.C. Han, Nanoscale 3, 2663–2678 (2011)

    Article  ADS  Google Scholar 

  99. Y.Y. Xu, F. Zhang, X.L. Feng, Small 7, 1338–1360 (2011)

    Article  Google Scholar 

  100. E. Menard, M.A. Meitl, Y.G. Sun, J.U. Park, D.J.L. Shir, Y.S. Nam, S. Jeon, J.A. Rogers, Chem. Rev. 107, 1117–1160 (2007)

    Article  Google Scholar 

  101. I.D.W. Samuel, G.A. Turnbull, Chem. Rev. 107, 1272–1295 (2007)

    Article  Google Scholar 

  102. J.K. Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, J. Poortmans, Prog. Mater Sci. 58, 1361–1387 (2013)

    Article  Google Scholar 

  103. W. Wu, J. Gu, H.X. Ge, C. Keimel, S.Y. Chou, Appl. Phys. Lett. 83, 2268–2270 (2003)

    Article  ADS  Google Scholar 

  104. H.J.H. Chen, C.J. Huang, Appl. Phys. Express 6(024201), 1–3 (2013)

  105. D.D. Cheam, P.S.K. Karre, M. Palard, P.L. Bergstrom, Microelectron. Eng. 86, 646–649 (2009)

    Article  Google Scholar 

  106. H.H. Cheng, C.N. Andrew, M.M. Alkaisi, Microelectron. Eng. 83, 1749–1752 (2006)

    Article  Google Scholar 

  107. H.J.H. Chen, J.R. Jhang, C.J. Huang, IEEE Trans. Electron Devices 59, 2314–2320 (2012)

    Article  ADS  Google Scholar 

  108. P.F. Moonen, B. Vratzov, W.T.T. Smaal, B.K.C. Kjellander, G.H. Gelinck, E.R. Meinders, J. Huskens, Org. Electron. 13, 3004–3013 (2012)

    Article  Google Scholar 

  109. P.F. Moonen, I. Yakimets, J. Huskens, Adv. Mater. 24, 5526–5541 (2012)

    Article  Google Scholar 

  110. K. Kudo, H. Yamauchi, M. Sakai, Jpn. J. Appl. Phys. 51(11PD05), 1–4 (2012)

  111. A. Lofstrand, T. Rindzevicius, J. Ring, T. Eriksson, B. Heidari, High Volume Nanoimprint Lithography: Application Area Organic Electronics (Research Publishing Services, Singapore, 2011)

    Google Scholar 

  112. Y.H. Qin, D.H. Turkenburg, I. Barbu, W.T.T. Smaal, K. Myny, W.Y. Lin, G.H. Gelinck, P. Heremans, J.H. Liu, E.R. Meinders, Adv. Funct. Mater. 22, 1209–1214 (2012)

    Article  Google Scholar 

  113. N. Sanetra, Z. Karipidou, R. Wirtz, N. Knorr, S. Rosselli, G. Nelles, A. Offenhaeusser, D. Mayer, Adv. Funct. Mater. 22, 1129–1135 (2012)

    Article  Google Scholar 

  114. L. Tao, J. Lee, D. Akinwande, J. Vac. Sci. Technol. B. 29(06FG07), 1–6 (2011)

  115. X. Cheng, H. Park, D. Cui, Functional Polymer Micro- and Nanostructures by Nanoimprint (Crc Press-Taylor & Francis Group, Boca Raton, 2009)

    Google Scholar 

  116. M. Colburn, A. Grot, B.J. Choi, M. Amistoso, T. Bailey, S.V. Sreenivasan, J.G. Ekerdt, C.G. Willson, J. Vac. Sci. Technol. B 19, 2162–2172 (2001)

    Article  Google Scholar 

  117. S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro, H. Hiroshima, J. Vac. Sci. Technol. B 19, 2801–2805 (2001)

    Article  Google Scholar 

  118. D. Wu, A.D. Li, H.Q. Ling, T. Yu, Z.G. Liu, N.B. Ming, J. Appl. Phys. 90, 4130–4133 (2001)

    Article  ADS  Google Scholar 

  119. J.R. Tao, Y.F. Chen, X.Z. Zhao, A. Malik, Z. Cui, Microelectron. Eng. 78–79, 665–669 (2005)

    Article  Google Scholar 

  120. S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, H. Namatsu, M. Komuro, J. Vac. Sci. Technol. B 21, 688–692 (2003)

    Article  Google Scholar 

  121. Y. Chen, J. Tao, X. Zhao, Z. Cui, A.S. Schwanecke, N.I. Zheludev, Microelectron. Eng. 78, 612–617 (2005)

    Article  Google Scholar 

  122. Y. Chen, A.S. Schwanecke, V. Fedotov, V. Khardikov, P. Mladyonov, S. Prosvirnin, A. Rogacheva, N.I. Zheludev, E. Huq, Microelectron. Eng. 86, 1081–1084 (2009)

    Article  Google Scholar 

  123. J.H. Sung, M.W. Lee, S.G. Lee, S.G. Park, E.H. Lee, B.H. O, Thin Solid Films 515, 5153–5157 (2007)

    Article  ADS  Google Scholar 

  124. V. Auzelyte, H.H. Solak, Y. Ekinci, R. MacKenzie, J. Voros, S. Olliges, R. Spolenak, Microelectron. Eng. 85, 1131–1134 (2008)

    Article  Google Scholar 

  125. M. Rommel, B. Nilsson, P. Jedrasik, V. Bonanni, A. Dmitriev, J. Weis, Microelectron. Eng. 110, 123–125 (2013)

    Article  Google Scholar 

  126. V.M. Sundaram, S.B. Wen, J. Micromech. Microeng. 21(065021), 1–8 (2011)

  127. H.F. Yang, A.Z. Jin, Q. Luo, J.J. Li, C.Z. Gu, Z. Cui, Microelectron. Eng. 85, 814–817 (2008)

    Article  Google Scholar 

  128. X.D. Wang, Y. Chen, S. Banu, H. Morgan, S.J. Fu, Z. Cui, Microelectron. Eng. 84, 872–876 (2007)

    Article  Google Scholar 

  129. X.D. Wang, Y.L. Liao, B. Liu, L.J. Ge, G.H. Li, S.J. Fu, Y.F. Chen, Z. Cui, Microelectron. Eng. 85, 910–913 (2008)

    Article  Google Scholar 

  130. S.Q. Xie, B.R. Lu, Y. Sun, Y.F. Chen, X.P. Qu, R. Liu, J. Nanosci. Nanotechnol. 9, 1437–1440 (2009)

    Article  Google Scholar 

  131. S.Q. Xie, J. Wan, B.R. Lu, Y. Sun, Y.F. Chen, X.P. Qu, R. Liu, Microelectron. Eng. 85, 914–917 (2008)

    Article  Google Scholar 

  132. S. Banu, S. Birtwell, G. Galitonov, Y.F. Chen, N. Zheludev, H. Morgan, J. Micromech. Microeng. 17, S116–S121 (2007)

    Article  ADS  Google Scholar 

  133. Z.C. Xu, S.Q. Xie, Z. Shu, B.R. Lu, J. Wan, Y.F. Chen, E. Huq, X.P. Qu, R. Liu, Microelectron. Eng. 87, 1005–1007 (2010)

    Article  Google Scholar 

  134. H. Cao, Z.N. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. Chen, W. Wu, S.Y. Chou, Appl. Phys. Lett. 81, 174–176 (2002)

    Article  ADS  Google Scholar 

  135. R. Chantiwas, S. Park, S.A. Soper, B.C. Kim, S. Takayama, V. Sunkara, H. Hwang, Y.K. Cho, Chem. Soc. Rev. 40, 3677–3702 (2011)

    Article  Google Scholar 

  136. L.J. Guo, Adv. Mater. 19, 495–513 (2007)

    Article  Google Scholar 

  137. L.J. Lee, Ann. Biomed. Eng. 34, 75–88 (2006)

    Article  Google Scholar 

  138. R. Marie, A. Kristensen, J. Biophotonics 5, 673–686 (2012)

    Article  Google Scholar 

  139. W. Reisner, J.N. Pedersen, R.H. Austin, Rep. Prog. Phys. 75(106601), 1–34 (2012)

  140. D.Y. Xia, J.C. Yan, S.F. Hou, Small 8, 2787–2801 (2012)

    Article  Google Scholar 

  141. B. Yang, S.W. Pang, J. Vac. Sci. Technol. B 24, 2984–2987 (2006)

    Article  Google Scholar 

  142. R. Yang, B.R. Lu, J. Wan, S.Q. Xie, Y.F. Chen, E. Huq, X.P. Qu, R. Liu, Microelectron. Eng. 86, 1379–1381 (2009)

    Article  Google Scholar 

  143. X.J. Li, X.D. Wang, J.A. Jin, X. Li, Y.C. Tian, S.J. Fu, Soft substrate as a sacrificial layer for fabrication free-standing SU-8-based nanofluidic system, in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems, ed. by T. Ye, S. Han, M. Kameyama, S. Hu (Spie-Int Soc Optical Engineering, Bellingham, 2010)

    Google Scholar 

  144. X.J. Li, H. You, H. Jiang, R.H. Lin, D.Y. Kong, R. Jiang, L.K. Zhu, J. Gao, M. Tang, X.D. Wang, S.J. Fu, Micro Nano Lett. 9, 105–108 (2014)

    Article  Google Scholar 

  145. L.H. Thamdrup, A. Klukowska, A. Kristensen, Nanotechnology 19(125301), 1–6 (2008)

  146. L.H. Thamdrup, J.N. Pedersen, H. Flyvbjerg, N.B. Larsen, A. Kristensen, Nanoimprinted polymer chips for light induced local heating of liquids in micro and nanochannels, in Conference on Nanoengineering: fabrication, properties, optics, and devices VII, Proceedings of SPIE-The International Society for Optical Engineering, vol. 764 (San Diego, CA, 2010), pp. 7764

  147. Z.F. Yin, E. Cheng, H.L. Zou, Lab Chip 14, 1614–1621 (2014)

    Article  Google Scholar 

  148. S. DeOrnellas, P. Rajora, A. Cofer, Integr. Ferroelectr. 17, 395–402 (1997)

    Article  Google Scholar 

  149. S.H. Ahn, L.J. Guo, Adv. Mater. 20, 2044 (2008)

    Article  Google Scholar 

  150. S.H. Ahn, L.J. Guo, ACS Nano 3, 2304–2310 (2009)

    Article  Google Scholar 

  151. S.H. Ahn, L.J. Guo, Advanced fabrication technologies for micro/nano optics and photonics II, 7205 (2009)

  152. Y.F. Chen, J.R. Tao, X.Z. Zhao, Z. Cui, A.S. Schwanecke, N.I. Zheludev, Microelectron. Eng. 78–79, 612–617 (2005)

    Article  Google Scholar 

  153. B.R. Lu, J. Wan, S.Q. Xie, Z. Shu, Y. Sun, Y.F. Chen, X.P. Qu, R. Liu, Microelectron. Eng. 85, 866–869 (2008)

    Article  Google Scholar 

  154. B.R. Lu, J. Wan, Z. Shu, S.Q. Xie, Y.F. Chen, E. Huq, X.P. Qu, R. Liu, Microelectron. Eng. 86, 619–621 (2009)

    Article  Google Scholar 

  155. S.R. Deng, B.R. Lu, B.Q. Dong, J. Wan, Z. Shu, J. Xue, Y.F. Chen, E. Huq, R. Liu, X.P. Qu, Microelectron. Eng. 87, 985–988 (2010)

    Article  Google Scholar 

  156. B.R. Lu, J.X. Li, H.B. Guo, C. Gao, E. Huq, X.P. Qu, Y.F. Chen, R. Liu, Microelectron. Eng. 88, 2650–2652 (2011)

    Article  Google Scholar 

  157. S. Buzzi, F. Robin, V. Callegari, J.F. Loffler, Microelectron. Eng. 85, 419–424 (2008)

    Article  Google Scholar 

  158. Y.F. Chen, X.D. Wang, S. Banu, A.S. Schwanecke, H. Morgan, N.I. Zheludev, IEEE Nano Metamaterials and Photonic Gratings by Nanoimprint and Hot Embossing (IEEE, New York, 2006)

    Google Scholar 

  159. R. Liu, B.R. Lu, S.Q. Xie, J. Wan, Z. Shu, X.P. Qu, Y. Chen, J. Korean Phys. Soc. 55, 1290–1294 (2009)

    Article  ADS  Google Scholar 

  160. J. Wan, S.R. Deng, Y.F. Chen, E. Huq, R. Liu, X.P. Qu, IEEE, Trilayer Nanoimprint Fabrication and Simulation of the Silicon Nanowire Sensor for Gas Detection (IEEE, New York, 2009)

    Google Scholar 

  161. J. Wan, S.R. Deng, R. Yang, Z. Shu, B.R. Lu, S.Q. Xie, Y.F. Chen, E. Huq, R. Liu, X.P. Qu, Microelectron. Eng. 86, 1238–1242 (2009)

    Article  Google Scholar 

  162. C. Gao, S.R. Deng, J. Wan, B.R. Lu, R. Liu, E. Huq, X.P. Qu, Y.F. Chen, Microelectron. Eng. 87, 927–930 (2010)

    Article  Google Scholar 

  163. C. Gao, Z.C. Xu, S.R. Deng, J. Wan, Y.F. Chen, R. Liu, E. Huq, X.P. Qu, Microelectron. Eng. 88, 2100–2104 (2011)

    Article  Google Scholar 

  164. Z.C. Xu, B.Q. Dong, B.R. Lu, Y.F. Chen, E. Huq, X.P. Qu, R. Liu, Microelectron. Eng. 88, 2647–2649 (2011)

    Article  Google Scholar 

  165. Z.C. Xu, B.Q. Dong, J. Xue, R. Yang, B.R. Lu, S.R. Deng, Z.F. Li, W. Lu, Y.F. Chen, E. Huq, X.P. Qu, R. Liu, Microelectron. Eng. 87, 1297–1299 (2010)

    Article  Google Scholar 

  166. A. Boltasseva, J. Opt. A Pure Appl. Opt. 11(114001), 1–11 (2009)

  167. N. Guillot, M.L. de la Chapelle, J. Nanophotonics 6(064506), 1–4 (2012)

  168. F.J.B. Calleja, A.G. Arche, T.A. Ezquerra, C.S. Cruz, F. Batallan, B. Frick, E.L. Cabarcos, Adv. Polym. Sci. 108, 1–48 (1993)

    Article  Google Scholar 

  169. A. Gruverman, A. Kholkin, Rep. Prog. Phys. 69, 2443–2474 (2006)

    Article  ADS  Google Scholar 

  170. Z.J. Hu, M.W. Tian, B. Nysten, A.M. Jonas, Nat. Mater. 8, 62–67 (2009)

    Article  ADS  Google Scholar 

  171. J.R. Fang, Z.K. Shen, S. Yang, Q. Lu, J.X. Li, Y.F. Chen, R. Liu, Microelectron. Eng. 88, 2033–2036 (2011)

    Article  Google Scholar 

  172. J.J. Wen, Z.K. Shen, Z.J. Qiu, A.Q. Jiang, R. Liu, Y.F. Chen, J. Vac. Sci. Technol. B 29( 06FG08), 1–4 (2011)

  173. J. Junquera, P. Ghosez, Nature 422, 506–509 (2003)

    Article  ADS  Google Scholar 

  174. A. Roelofs, I. Schneller, K. Szot, R. Waser, Appl. Phys. Lett. 81, 5231–5233 (2002)

    Article  ADS  Google Scholar 

  175. Y. Wang, J.J. Santiago-Aviles, Nanotechnology 15, 32–36 (2004)

    Article  ADS  Google Scholar 

  176. M.W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, U. Gosele, Nat. Mater. 3, 87–90 (2004)

    Article  ADS  Google Scholar 

  177. X.Y. Zhang, X. Zhao, C.W. Lai, J. Wang, X.G. Tang, J.Y. Dai, Appl. Phys. Lett. 85, 4190–4192 (2004)

    Article  ADS  Google Scholar 

  178. B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse, M. Alex, Nano Lett. 9, 1127–1131 (2009)

    Article  ADS  Google Scholar 

  179. A. Schilling, R.M. Bowman, G. Catalan, J.F. Scott, J.M. Gregg, Nano Lett. 7, 3787–3791 (2007)

    Article  ADS  Google Scholar 

  180. H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gosele, Nat. Mater. 5, 627–631 (2006)

    Article  ADS  Google Scholar 

  181. Y.B. Mao, S. Banerjee, S.S. Wong, J. Am. Chem. Soc. 125, 15718–15719 (2003)

    Article  Google Scholar 

  182. S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao, Adv. Mater. 13, 1269–1272 (2001)

    Article  Google Scholar 

  183. J.F. Liu, X.L. Li, Y.D. Li, J. Nanosci. Nanotechnol. 2, 617–619 (2002)

    Article  Google Scholar 

  184. A. Cofer, P. Rajora, S. DeOrnellas, D. Keil, Integr. Ferroelectr. 16, 53–61 (1997)

    Article  Google Scholar 

  185. Z.K. Shen, Z.H. Chen, H. Li, X.P. Qu, Y. Chen, R. Liu, Appl. Surf. Sci. 257, 8820–8823 (2011)

    Article  ADS  Google Scholar 

  186. Z.K. Shen, Q. Lu, Z.H. Chen, A.Q. Jiang, Z.J. Qiu, X.P. Qu, Y.F. Chen, R. Liu, Microelectron. Eng. 88, 2041–2044 (2011)

    Article  Google Scholar 

  187. Z.K. Shen, Z.H. Chen, Q.A. Lu, A.Q. Jiang, Z.J. Qiu, X.P. Qu, Y.F. Chen, R. Liu, J Vac. Sci. Technol. B 28, C6M28–C26M31 (2010)

    Google Scholar 

  188. Z.D. Li, Z.K. Shen, W.Y. Hui, Z.J. Qiu, X.P. Qu, Y.F. Chen, R. Liu, Microelectron. Eng. 88, 2037–2040 (2011)

    Article  Google Scholar 

  189. Z.K. Shen, Z.H. Chen, Q. Lu, Z.J. Qiu, A.Q. Jiang, X.P. Qu, Y.F. Chen, R. Liu, Nanoscale Res. Lett. 6(474), 1–6 (2011)

  190. M. Fan, W.Y. Hui, Z.D. Li, Z.K. Shen, H. Li, A.Q. Jiang, Y.F. Chen, R. Liu, Microelectron. Eng. 98, 371–373 (2012)

    Article  Google Scholar 

  191. Z.K. Shen, G.P. Chen, Z.H. Chen, X.P. Qu, Y.F. Chen, R. Liu, Langmuir 27, 5167–5170 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges all the important contributions from my colleagues in the preparation of this review. Notably, nondestructive removal of residual resist after imprint and the imprint of T-shape gates was carried out together with Dr. D. S. Macintyre, Dr. Stephen Thoms and many others at the James Watt Nanofabrication Centre (the former Nanoelectronics research center), School of Engineering, University of Glasgow in the UK under the EPSRC Grant (Nanofabrication technology driven by high-speed devices: GA/M93383). My PhD student, Dr. Jiarui Tao, and the visiting postdoc, Dr. Xudi Wang, as well as my colleagues, Dr. E. Huq and others, at Micro Nanotechnology Centre, Rutherford Appleton Laboratory in the UK had made brilliant contributions in dry etch and nanoimprint under TSB Project (Ref CHBS/004/00090C) and EU FP7 Project (MICROCARE, Ref. PIRSES-GA-2009-247641). The author also appreciates the close collaborations with Prof Ran Liu and Prof Xinping Qu at Fudan University of China for their important contributions to the development and applications of nanoimprint lithography under the 863 Grant (Ref: 2006AA03Z352). It is impossible to make this review happen without their marvelous input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y. Applications of nanoimprint lithography/hot embossing: a review. Appl. Phys. A 121, 451–465 (2015). https://doi.org/10.1007/s00339-015-9071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9071-x

Keywords

Navigation