Skip to main content
Log in

Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

M-type barium hexaferrite [Ba1−x Nd x Co x Fe12−x O19 (x = 0.0–0.5) (BNCM)] powders, synthesized using citrate precursor method, were heat treated at 900 °C for 5 h. The pattern of powders, when subjected to X-ray diffraction, shows the formation of M-type hexaferrite phase. The formation of BNCM, from thermogravimetric analysis/differential thermal analysis/derivative thermogravimetry, is observed to be at 440 °C. The presence of two prominent peaks near 430 and 580 cm−1 in Fourier transform infrared spectroscopy spectra indicates the formation of M-type hexaferrites. The MH curves obtained from vibrating sample magnetometer were used to calculate saturation magnetization (M S), retentivity (M R), squareness ration and coercivity (H C). UV–Vis NIR spectroscopy reveals that band gap depends on size of the crystallites. The dielectric constant is found to be high at low frequency and decreases with increase in frequency. This kind of behaviour is explained on the basis of Koop’s phenomenological theory and Maxwell–Wagner theory.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Bhattacharya et al., Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. R. Soc. Chem. Adv. 4, 17039–17053 (2014)

    Google Scholar 

  2. C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, A. Sanchez, Long-distance transfer and routing of static magnetic fields. Phys. Rev. Lett. 112, 253901–253905 (2014)

    Article  ADS  Google Scholar 

  3. M.N. Ashiq et al., Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices. J. Magn. Magn. Mater. 324, 15–19 (2012)

    Article  ADS  Google Scholar 

  4. H.A. Patel, J. Byun, C.T. Yavuz, Arsenic removal by magnetic nanocrystalline barium hexaferrite. J. Nanopart. Res. 14, 881–887 (2012)

    Article  Google Scholar 

  5. V. Anbarasu et al., Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J. Mater. Sci. Mater. Electron. 24, 916–926 (2013)

    Article  Google Scholar 

  6. J. Qiu, Q. Zhang, M. Gu, H. Shen, Effect of aluminium substitution on microwave absorption properties of barium hexaferrite. J. Appl. Phys. 98, 103905 (2005)

    Article  ADS  Google Scholar 

  7. A. Thakur, R.R. Singh, P.B. Barman, Synthesis and characterizations of Nd3+ doped SrFe12O19 nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013)

    Article  Google Scholar 

  8. P.B. Braun, Philos. Res. Rep. 12, 491 (1957)

    Google Scholar 

  9. M. Radwan, M.M. Rashad, M.M. Hessien, Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 181, 106–109 (2007)

    Article  Google Scholar 

  10. T. Gonzalez-Carreno, M.P. Morales, C.J. Serna, Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43, 97–101 (2000)

    Article  Google Scholar 

  11. M. Cernea, S.G. Sandu, C. Galassi, R. Radu, V. Kuncser, Magnetic properties of Ba x Sr1−x Fe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J. Alloys Compd. 561, 121–128 (2013)

    Article  Google Scholar 

  12. P. Winotai, S. Thongmee, I.M. Tang, Cation distribution in bismuth-doped M-type barium hexaferrite. Mater. Res. Bull. 35, 1747–1753 (2000)

    Article  Google Scholar 

  13. F. Khademi, A. Poorbafrani, P. Kameli, H. Salamati, Structural, barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525–531 (2012)

    Article  Google Scholar 

  14. F. Hu, L. Fernandez-Garcia, X.S. Liu, D.R. Zhu, M. Suarez, J.L. Menendez, A strong magneto-optical activity in rare-earth La(3+) substituted M-type strontium ferrites. J. Appl. Phys. 109, 113906 (2011)

    Article  ADS  Google Scholar 

  15. H. Sozeri, I. Kucuk, H. Ozkan, Improvement in magnetic properties of La substituted BaFe12O19 particles prepared with an unusually low Fe/Ba molar ratio. J. Magn. Magn. Mater. 323, 1799–1804 (2011)

    Article  ADS  Google Scholar 

  16. I. Bsoul, S.H. Mahmood, Magnetic and structural properties of BaFe12x GaxO19 nanoparticles. J. Appl. Phys. 489, 110–114 (2010)

    Google Scholar 

  17. V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, K.M. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406, 789–793 (2011)

    Article  ADS  Google Scholar 

  18. S. Ounnunkad, Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472–475 (2006)

    Article  ADS  Google Scholar 

  19. H. Xiaogu, Z. Jing, W. Hongzhou, Y. Shaoteng, W. Lixi, Z. Qitu, Er3+-substituted W-type barium ferrite: preparation and electromagnetic properties. J. Rare Earths 28, 940–943 (2010)

    Article  Google Scholar 

  20. X. Liu, P. Hernández-Gómez, K. Huang, S. Zhou, Y. Wang, X. Cai et al., Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 305, 524–528 (2006)

    Article  ADS  Google Scholar 

  21. T. Kaur, B. Kaur, B.H. Bhat, S. Kumar, A.K. Srivastava, Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites. Phys. B 456, 206–212 (2015)

    Article  ADS  Google Scholar 

  22. M.K. Tehrani, A. Ghasemi, M. Moradi, R.S. Alam, Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398–8400 (2011)

    Article  Google Scholar 

  23. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.A. Iqbal, Structural, electrical, and microstructure properties of nanostructured calcium doped ba-hexaferrites synthesized by sol–gel method. J. Supercond. Novel Magn. 26, 3277–3286 (2013)

    Article  Google Scholar 

  24. M.L. Gregori, M.S. Pinho, R.C. Lima, J.C.S. Leandro, T. Ogasawara, Effect of different dopants on the microwave properties of M-doped barium hexaferrites. Key Eng. Mater. 264–268, 1229–1232 (2004)

    Article  Google Scholar 

  25. A.G. Belous, O.I. V’yunov, E.V. Pashkova, V.P. Ivanitskii, O.N. Gavrilenko, Mossbauer study and magnetic properties of M-type barium hexaferrite doped with Co + Ti and Bi + Ti ions. J. Phys. Chem. B 110, 26477–26481 (2006)

    Article  Google Scholar 

  26. V.V. Soman, V.M. Nanoti, D.K. Kulkarni, Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39, 5713–5723 (2013)

    Article  Google Scholar 

  27. Y. Liu, M.G.B. Drew, Y. Liu, J. Wang, M. Zhang, Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12_2x Co x/2Zn x/2Sn x O19, x = 0.0–2.0. J. Magn. Magn. Mater. 322, 814–818 (2010)

    Article  ADS  Google Scholar 

  28. F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J.L. Sanchez et al., Magnetic and Mössbauer study of rare-earth-substituted M–W- and X-type hexagonal ferrites. J. Mater. Sci. 25, 2765–2770 (1990)

    Article  ADS  Google Scholar 

  29. Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishitawa, T. Arima, S. Wakimoto et al., Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105, 257201(4) (2010)

    Article  ADS  Google Scholar 

  30. A. Ghasemi, Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magn. Magn. Mater. 323, 3133–3137 (2011)

    Article  ADS  Google Scholar 

  31. J.C. Corral-Huacuz, G. Mendoza-Suárez, Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel. J. Magn. Magn. Mater. 242–245, 430–433 (2002)

    Article  Google Scholar 

  32. A.P. Safronov et al., Synthesis of strontium hexaferrite nanopowder by the laser evaporation method. Nanotechnol. Russ. 7, 486–491 (2012)

    Article  Google Scholar 

  33. H. Li, J. Huang, Q. Li, X. Su, Preparation of barium ferrite films with high Fe/Ba ratio by sol–gel method. J. Sol-Gel. Sci. Technol. 52, 309–314 (2009)

    Article  Google Scholar 

  34. X. Liu, J. Wang, L.M. Gan, S.C. Ng, J. Ding, An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184, 344–354 (1998)

    Article  ADS  Google Scholar 

  35. S.M. Masoudpanaha, S.A. Seyyed Ebrahimia, C.K. Ong, Magnetic properties of strontium hexaferrite films prepared by pulsed laser deposition. J. Magn. Magn. Mater. 324, 2654–2658 (2012)

    Article  ADS  Google Scholar 

  36. M.V. Cabanas, J.M. Gonzalez-Calbet, M. Vallet-Regi, Synthesis of barium hexaferrite by pyrolysis of an aerosol. J. Mater. Res. 9, 712–716 (1994)

    Article  ADS  Google Scholar 

  37. M.C. Dimri, S.C. Kashyap, D.C. Dube, Electrical and magnetic properties of barium hexaferrite nanoparticles prepared by citrate precursor method. Ceram. Int. 30, 1623–1626 (2004)

    Article  Google Scholar 

  38. A. Gonzalez-Angeles et al., Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270, 77–83 (2004)

    Article  ADS  Google Scholar 

  39. W.Y. Zhao, P. Wei, H.B. Cheng, X.F. Tang, Q.J. Zhang, FTIR Spectra, Lattice shrinkage, and magnetic properties of CoTi-substituted M-type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095–2103 (2007)

    Article  Google Scholar 

  40. M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)

    Article  Google Scholar 

  41. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.A. Iqbal, Structural and magnetic properties of nano-structured Eu3+ substituted M-type hexaferrites synthesized by sol–gel auto-combustion technique. J. Supercond. Novel Magn. 26, 3315–3323 (2013)

    Article  Google Scholar 

  42. A. Thakur, R.R. Singh, P.B. Barman, Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35–40 (2013)

    Article  ADS  Google Scholar 

  43. F. Song, X. Shen, J. Xiang, H. Song, Formation and magnetic properties of M-Sr ferrite hollow fibers via organic gel-precursor transformation process. Mater. Chem. Phys. 120, 213–216 (2010)

    Article  Google Scholar 

  44. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443–2455 (2012)

    Article  Google Scholar 

  45. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, K. Asokan, Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle system. J. Phys. D Appl. Phys. 44, 435306 (2011)

    Article  Google Scholar 

  46. A. Poorbafrani, P. Kameli, H. Salamati, Structural, magnetic and electromagnetic wave absorption properties of SrFe12O19/ZnO nanocomposites. J. Mater. Sci. 48, 186–191 (2013)

    Article  ADS  Google Scholar 

  47. A. Singh, S.B. Narang, K. Singh, O.P. Pandey, R.K. Kotnala, Electrical and magnetic properties of rare earth substituted strontium hexaferrites. J. Ceram. Process. Res. 11, 11241–11249 (2010)

    Google Scholar 

  48. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of heat-treatment temperature on the microstructure, electrical and dielectric properties of M-type hexaferrites. J. Electron. Mater. 43, 512–521 (2014)

    Article  ADS  Google Scholar 

  49. S.B. Narang, I.S. Hudiara, Microwave dielectric properties of M-type barium, calcium and strontium hexaferrite substituted with Co and Ti. J. Ceram. Process. Res. 7, 113–116 (2006)

    Google Scholar 

  50. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104–2114 (2013)

    Article  Google Scholar 

  51. M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, Acetone and ethanol sensing of barium hexaferrite particles: a case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators B Chem. 190, 627–633 (2014)

    Article  Google Scholar 

  52. S. Anjum, M.S. Rafique, M. Khaleeq-ur-Rahman, K. Siraj, A. Usman, S.I. Hussain, S. Naseem, Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J. Magn. Magn. Mater. 324, 711–716 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are thankful to STIC-Kochi (Ernakulum) for XRD, TGA/DTA/DTG, SEM and UV–Vis–NIR, IIT Madras for VSM. We are highly thankful to Lovely Professional University for providing financial support (No. LPU/DRD/IPF/Sac/004) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Kumar, S., Bhat, B.H. et al. Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A 119, 1531–1540 (2015). https://doi.org/10.1007/s00339-015-9134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9134-z

Keywords

Navigation