Skip to main content
Log in

Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Preuss, E. Matthias, M. Stuke, Sub-picosecond UV-laser ablation of Ni films: strong fluence reduction and thickness-independent removal. Appl. Phys. A 59, 79–82 (1994)

    Article  ADS  Google Scholar 

  2. S. Kuiper, M. Stuke, Femtosecond UV excimer laser ablation. Appl. Phys. B 44, 199–204 (1987)

    Article  ADS  Google Scholar 

  3. S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A 61, 33–37 (1995)

    Article  ADS  Google Scholar 

  4. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tuennermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  5. T. Goetz, M. Stuke, Short-pulse UV laser ablation of solid and liquid metals: indium. Appl. Phys. A 64, 539–543 (1997)

    ADS  Google Scholar 

  6. I. Zergioti, M. Stuke, Short pulse UV laser ablation of solid and liquid gallium. Appl. Phys. A 67, 391–395 (1998)

    Article  ADS  Google Scholar 

  7. T.V. Kononenko, V.I. Konov, S.V. Garnov, R. Danielius, A. Piskarskas, G. Tamoshauskas, F. Dausinger, Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses. Quantum Electron. 29(8), 724–728 (1999)

    Article  ADS  Google Scholar 

  8. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Appl. Phys. Lett. 80(21), 3886–3888 (2002)

    Article  ADS  Google Scholar 

  9. A. Ostendorf, G. Kamlage, U. Klug, F. Korte, B.N. Chichkov, Femtosecond versus picosecond laser ablation, in Proceedings of SPIE 5713, (2005)

  10. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Foehl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. Appl. Surf. Sci. 249, 322–331 (2005)

    Article  ADS  Google Scholar 

  11. B. Tan, S. Panchatsharam, K. Venkatakrishnan, High repetition rate femtosecond laser forming sub 10 µm diameter interconnection vias. J. Phys. D Appl. Phys. 42(065102), 1–9 (2009)

    Google Scholar 

  12. D. Shin, J. Suh, Y. Cho, Effect of pulse interval on TSV process using a picosecond laser. JLMN J. Laser Micro/Nanoeng. 7(2), 137–142 (2012)

    Article  Google Scholar 

  13. J. Finger, M. Reininghaus, Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz. Opt. Express 22(15), 18790–18799 (2014)

    Article  ADS  Google Scholar 

  14. F. Di Niso, C. Gaudiuso, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugarà, Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel. Phys. Procedia 41, 698–707 (2013)

    Article  ADS  Google Scholar 

  15. A. Ancona, S. Doering, C. Jauregui, F. Roeser, J. Limpert, S. Nolte, A. Tuennermann, Femtosecond and picosecond laser drilling of metals at high repetition rates and powers. Opt. Lett. 34(21), 3304–3306 (2009)

    Article  ADS  Google Scholar 

  16. J. Schille, L. Schneider, U. Loeschner, R. Ebert, P. Scully, N. Goddard, B. Steiger, H. Exner, Micro processing of metals using a high repetition rate femto second laser: from laser process parameter study to machining examples, in Proceedings of ICALEO—30th International Congress on Applied of Lasers & Electro-Optic ICALEO, Orlando, FL (USA), 1–10 (2011)

  17. J. Schille, L. Schneider, L. Hartwig, U. Loeschner, R. Ebert, P. Scully, N. Goddard, H. Exner, Characterization of interaction phenomena in high repetition rate femtosecond laser ablation of metals, in Proceedings of ICALEO—31st International Congress on Applied of Lasers & Electro-Optics, Anaheim, CA (USA), 949–958 (2012)

  18. M. Faucon, G. Mincuzzi, F. Morin, C. Hoenninger, E. Mottay, R. Kling, Metal deep engraving with high average power femtosecond lasers, in Proceedings of SPIE 9351, Laser-based Micro- and Nanoprocessing IX, 93510Q (2015)

  19. M.N.W. Groenendijk, J. Meijer, Surface microstructures obtained by femtosecond laser pulses. Ann. CIRP 55/1, 183–186 (2006)

  20. J. Schille, R. Ebert, U. Loeschner, L. Schneider, N. Walther, P. Regenfuss, P. Scully, N. Goddard, H. Exner, An ultrafast femtosecond fibre laser as a new tool in Rapid Microtooling, in Proceedings of LAMP2009—the 5th International Congress on Laser Advanced Materials Processing, Kobe, Japan, (2009)

  21. P.H. Wu, C.W. Cheng, C.P. Chang, T.M. Wu, J.K. Wang, Fabrication of large-area hydrophobic surfaces with femtosecond-laser structured molds. J. Micromech. Microeng. 21(115032), 1–7 (2011)

    Google Scholar 

  22. F.P. Mezzapesa, M. Scaraggi, M. Carbone, D. Sorgente, A. Ancona, P.M. Lugarà, Varying the geometry of laser surface microtexturing to enhance the frictional behavior of lubricated steel surfaces. Phys. Procedia 41, 677–682 (2013)

    Article  ADS  Google Scholar 

  23. G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, M. Gedvilas, Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high? J. Laser Micro/Nanoeng. 4, 186–191 (2009)

    Article  Google Scholar 

  24. B. Neuenschwander, B. Jaeggi, M. Schmid, G. Hennig, Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput. Phys. Procedia 56, 1047–1058 (2014)

    Article  ADS  Google Scholar 

  25. J. Schille, L. Schneider, P. Lickschat, U. Loeschner, R. Ebert, H. Exner, High-pulse repetition frequency ultrashort pulse laser processing of copper. J. Laser Appl. 27, S28007 (2015)

    Article  Google Scholar 

  26. B. Jaeggi, B. Neuenschwander, U. Hunziker, J. Zuercher, T. Meier, M. Zimmermann, K.H. Selbmann, G. Hennig, Ultra high precision surface structuring by synchronizing a galvo scanner with an ultra short pulsed laser system in MOPA arrangement, in Proceedings of SPIE, vol. 8243, (2012)

  27. S. Nolte, C. Momma, H. Jacobs, A. Tuennermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14(10), 2716–2722 (1997)

    Article  ADS  Google Scholar 

  28. P. Mannion, J. Magee, E. Coyne, G.M. O’Connor, Ablation thresholds in ultrafast laser micro-machining of common metals in air, in Proceedings of SPIE 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, 470–478 (2002)

  29. B. Neuenschwander, B. Jaeggi, M. Zimmermann, G. Hennig, Influence of particle shielding and heat accumulation effects onto the removal rate for laser micromachining with ultra-short pulses at high repetition rates, in Proceedings of ICALEO—33rd International Congress on Applied of Lasers & Electro-Optic ICALEO, San Diego, CA (USA), paper M1104 (2014)

  30. S. Nolte, S. Doering, A. Ancona, J. Limpert, A. Tuennermann, high repetition rate ultrashort pulse micromachining with fiber lasers, in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America), paper FThC1 (2011)

  31. P. Lickschat, J. Schille, M. Mueller, S. Weissmantel, G. Reisse, Comparative study on microstructuring of steel using pico- and femtosecond laser pulses, in Proceedings of ICALEO—31st International Congress on Applied of Lasers & Electro-Optics, Anaheim, CA (USA), paper P145 (2012)

  32. R. Penttilä, H. Pantsar, P. Laakso, Picosecond laser processing–material removal rates of metals, in Proceedings of the 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta (Finland), 502–512 (2007)

Download references

Acknowledgments

The presented results have been conducted in course of the projects “Innoprofile Transfer—Rapid Micro/Hochrate–Laserbearbeitung” (03IPT506X) and GROminaS (03FH037PX4) funded by the Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Schille.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schille, J., Schneider, L. & Loeschner, U. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality. Appl. Phys. A 120, 847–855 (2015). https://doi.org/10.1007/s00339-015-9352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9352-4

Keywords

Navigation