Skip to main content

Advertisement

Log in

Toward laser welding of glasses without optical contacting

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to \(10\,\upmu \hbox {J}\). The laser-induced welding seams exhibit a base area with a size of up to \(450\,\upmu \hbox {m}\,\times 160\,\upmu \hbox {m}\). Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about \(3\,\upmu \hbox {m}\). Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bull. 31, 620 (2006)

    Article  Google Scholar 

  2. R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)

    Article  ADS  Google Scholar 

  3. C.B. Schaffer, J.F. Garcia, E. Mazur, Appl. Phys. A 76, 351 (2003)

    Article  ADS  Google Scholar 

  4. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  5. M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, App. Phys. Lett. 98(20), 201101 (2011)

    Article  ADS  Google Scholar 

  6. L.P.R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A.V. Korovin, U. Peschel, S. Nolte, A. Tünnermann, Appl. Phys. A 100, 1 (2010)

    Article  ADS  Google Scholar 

  7. J. Zhang, M. Gecevicius, M. Beresna, P.G. Kazansky, Phys. Rev. Lett. 112(3), 033901 (2014)

    Article  ADS  Google Scholar 

  8. C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. A 84(1–2), 47–61 (2006)

    Article  ADS  Google Scholar 

  9. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K.I. Hayashi, K. Itoh, Opt. Lett. 25(22), 1669–1671 (2000)

    Article  ADS  Google Scholar 

  10. S. Juodkazis, H. Misawa, T. Hashimoto, E.G. Gamaly, B. Luther-Davies, Appl. Phys. Lett. 88, 201909 (2006)

    Article  ADS  Google Scholar 

  11. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Appl. Phys. Lett. 89(2), 021106 (2006)

    Article  ADS  Google Scholar 

  12. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Appl. Phys. B 87(1), 85–89 (2007)

    Article  ADS  Google Scholar 

  13. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Exp. 13(12), 4708–4716 (2005)

    Article  ADS  Google Scholar 

  14. C.B. Schaffer, J.F. García, E. Mazur, Appl. Phys. A 76(3), 351–354 (2003)

    Article  ADS  Google Scholar 

  15. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, F. Yoshino, J. Laser Micro. Nanoen. 60(3–4), 59–66 (2007)

    Google Scholar 

  16. D. Helie, M. Begin, F. Lacroix, R. Vallee, Appl. Opt. 51(12), 2098–2106 (2012)

    Article  ADS  Google Scholar 

  17. S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 103(2), 257–261 (2011)

    Article  ADS  Google Scholar 

  18. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, Appl. Phys. B 87(1), 85–89 (2006)

    Article  ADS  Google Scholar 

  19. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, H. Helvajian, Opt. Exp. 19(23), 22961–22973 (2011)

    Article  ADS  Google Scholar 

  20. S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A 110(1), 9–15 (2013)

    Article  ADS  Google Scholar 

  21. F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Opt. 52(6), 1149–1154 (2013)

    Article  ADS  Google Scholar 

  22. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, M. Schmidt, Appl. Opt. 50(13), 1941–1944 (2011)

    Article  ADS  Google Scholar 

  23. K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, M. Schmidt, Opt. Exp. 23(5), 5681–5693 (2015)

    Article  ADS  Google Scholar 

  24. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, S. Nolte, Opt. Exp. 21(13), 15452–15463 (2013)

    Article  ADS  Google Scholar 

  25. K. Cvecek, I. Miyamoto, M. Schmidt, Opt. Exp. 22(13), 15877–15893 (2014)

    Article  ADS  Google Scholar 

  26. F. Kherbouche, B. Poumellec, J. Opt. A Pure Appl. Opt. 3(6), 429 (2001)

    Article  ADS  Google Scholar 

  27. S. Richter, F. Hashimoto, F. Zimmermann, Y. Ozeki, K. Itoh, A. Tünnermann, S. Nolte, Proc. SPIE 9355, 935515 (2015)

    Article  Google Scholar 

  28. A. Champion, Y. Bellouard, Opt. Mater. Express 2(6), 789–798 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support is gratefully acknowledged by the IGF project Opti-Bond (number 186530 BR). We thank T. Käsebier (FSU Jena) for the realization of the step index profile. We also acknowledge the help of K. Jorcke (Fraunhofer IOF Jena) for the three-point bending test. We thank M. Lancry (Université Paris Sud) for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, S., Zimmermann, F., Eberhardt, R. et al. Toward laser welding of glasses without optical contacting. Appl. Phys. A 121, 1–9 (2015). https://doi.org/10.1007/s00339-015-9377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9377-8

Keywords

Navigation