Skip to main content
Log in

Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, surface plasmon resonance (SPR) sensor based on graphene–MoS2 hybrid structure with composite layer of TiO2–SiO2 is presented. The angular interrogation method is used for the analysis of reflected light from the sensor. For the calculation of the sensitivity, first of all the thicknesses of TiO2, SiO2 and gold layers are optimized for the monolayer graphene and MoS2. Thereafter, at these optimum thicknesses the reflectance curves are plotted for different sensor structure and comparison of change in resonance angle is made among these structures. It is observed that the sensitivity of the graphene–MoS2-based sensor is enhanced by 9.24 % with respect conventional SPR sensor. The sensitivity is further enhanced by including TiO2–SiO2 composite layer between prism base and metal layer and observed that the enhanced sensitivity for this sensor is 12.82 % with respect to conventional SPR sensor and 3.28 % with respect to graphene–MoS2-based SPR sensor. At the end of this paper, the variation of the sensitivity and minimum reflectance is plotted with respect to sensing layer refractive index at the optimum thickness of all the layers and optimum number of MoS2 and graphene layers. It is also observed that four layers of MoS2 and monolayer graphene are best selection for the maximum enhancement of the sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23(A), 2135–2136 (1968)

    ADS  Google Scholar 

  2. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  3. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003). doi:10.1007/s00216-003-2101-0

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  5. Z. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11), 1205–1209 (2010)

    Article  Google Scholar 

  6. G.B. McGaughey, M. Gagné, A.K. Rappé, π-Stacking interactions. Alive and well in proteins. J. Biol. Chem. 273(25), 15458–15463 (1998)

    Article  Google Scholar 

  7. B. Song, D. Li, W.P. Qi, M. Elstner, C.H. Fan, H.P. Fang, Graphene on Au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. ChemPhysChem 11(3), 585–589 (2010)

    Article  Google Scholar 

  8. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. OSA Opt. Express 18(14), 14395–14400 (2010)

    Article  ADS  Google Scholar 

  9. A. Verma, A. Prakash, R. Tripathi, Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt. Quantum Electron (2014). doi:10.1007/s11082-014-9976-1

    Google Scholar 

  10. S. Zeng, S. Hu, J. Xia, T. Anderson, X.Q. Dinh, X.M. Meng, P. Coquet, K.T. Yong, Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensor. Sens. Actuators B Chem. 207, 801–810 (2015)

    Article  Google Scholar 

  11. J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, H. Zhang, Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4, 6346 (2014). doi:10.1038/srep06346

    Article  ADS  Google Scholar 

  12. B.K. Sharma, Solid State Physics and Devices-the Harbinger of Third Wave of Civilization. I.C. chips of future generation part 3. Carriers-phonon interaction in graphene. OpenStax-CNX module: m44257, September 15 (2014)

  13. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heniz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  14. C. Zhu, Z. Zeng, H. Li, F. Li, C. Fan, H. Zhang, Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135, 5998–6001 (2013)

    Article  Google Scholar 

  15. P.T.K. Loan, W. Zhang, C.T. Lin, K.H. Wei, L.J. Li, C.H. Chen, Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridization. Adv. Mater. 26, 4838–4844 (2014)

    Article  Google Scholar 

  16. C.W. Lin, K.P. Chen, C.N. Hsiao, S. Lin, C.K. Lee, Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor. Sens. Actuators B 113, 169–176 (2006)

    Article  Google Scholar 

  17. Y. Yuan, Y. Dai, A revised LRSPR sensor with sharp reflection spectrum. Sensors 14, 16664–16671 (2014)

    Article  Google Scholar 

  18. S.T. Kochuveedu, D.P. Kim, D.H. Kim, Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration. Am. Chem. Soc. 116, 2500–2506 (2012)

    Google Scholar 

  19. J. Xu, X. Xiao, A.L. Stepanov, F. Ren, W. Wu, G. Cai, S. Zhang, Z. Dai, F. Mei, C. Jiang, Efficiency enhancements in Ag nanoparticles-SiO2–TiO2 sandwiched structure via plasmonic effect-enhanced light capturing. Nanoscale Res. Lett. 8, 73 (2013)

    Article  ADS  Google Scholar 

  20. I. Pockrand, Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72, 577–588 (1978)

    Article  ADS  Google Scholar 

  21. P.K. Maharana, R. Jha, S. Palei, Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B Chem. 190, 494–501 (2014)

    Article  Google Scholar 

  22. S.H. Choi, Y.L. Kim, K.M. Byun, Graphene-on-silver substrate for sensitive surface plasmon resonance imaging biosensor. Opt. Soc. Am. Opt. Express 19(2), 458–466 (2011)

    Article  ADS  Google Scholar 

  23. R. Verma, B.D. Gupta, R. Jha, Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 160, 623–631 (2011)

    Article  Google Scholar 

  24. A. Shalabney, I. Abdulhalim, Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A 159, 24–32 (2010)

    Article  Google Scholar 

  25. W. Lee, D. Kim, Field-matter integral overlap to estimate the sensitivity of SPR biosensors. J. Opt. Soc. Am. A 29(7), 1367–1376 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The present work is partially supported by the Department of Science and Technology (DST), New Delhi, India, under the fast track young scientist Scheme no. SB/FTP/ETA -0478/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, J.B., Prajapati, Y.K., Singh, V. et al. Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121, 525–533 (2015). https://doi.org/10.1007/s00339-015-9442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9442-3

Keywords

Navigation