Skip to main content
Log in

Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, free vibration behavior of magneto–electro–thermo-elastic functionally graded nanobeams is investigated based on a higher order shear deformation beam theory. Four types of thermal loading including uniform and linear temperature change as well as heat conduction and sinusoidal temperature rise through the thickness are assumed. Magneto–electro–thermo-elastic properties of FG nanobeam are supposed to change continuously throughout the thickness based on power-law model. Via nonlocal elasticity theory of Eringen, the small size effects are adopted. Based upon Hamilton’s principle, the coupled nonlocal governing equations for higher order shear deformable METE-FG nanobeams are obtained and they are solved applying analytical solution. It is shown that the vibrational behavior of METE-FG nanobeams is significantly affected by various temperature rises, magnetic potential, external electric voltage, power-law index, nonlocal parameter and slenderness ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Jiang, H. Ding, Analytical solutions to magneto–electro-elastic beams. Struct. Eng. Mech. 18(2), 195–209 (2004)

    Article  MathSciNet  Google Scholar 

  2. W.Q. Chen, K.Y. Lee, H.J. Ding, On free vibration of non-homogeneous transversely isotropic magneto–electro-elastic plates. J. Sound Vib. 279(1), 237–251 (2005)

    Article  ADS  Google Scholar 

  3. A.R. Annigeri, N. Ganesan, S. Swarnamani, Free vibration behaviour of multiphase and layered magneto–electro-elastic beam. J. Sound Vib. 299(1), 44–63 (2007)

    Article  ADS  Google Scholar 

  4. A. Kumaravel, N. Ganesan, R. Sethuraman, Buckling and vibration analysis of layered and multiphase magneto–electro-elastic beam under thermal environment. Multidiscip. Model. Mater. Struct. 3(4), 461–476 (2007)

    Article  Google Scholar 

  5. A. Daga, N. Ganesan, K. Shankar, Transient dynamic response of cantilever magneto–electro-elastic beam using finite elements. Int. J. Comput. Methods Eng. Sci. Mech. 10(3), 173–185 (2009)

    Article  MATH  Google Scholar 

  6. M.F. Liu, T.P. Chang, Closed form expression for the vibration problem of a transversely isotropic magneto–electro-elastic plate. J. Appl. Mech. 77(2), 024502 (2010)

    Article  ADS  Google Scholar 

  7. S. Razavi, A. Shooshtari, Nonlinear free vibration of magneto–electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015)

    Article  Google Scholar 

  8. L. Xin, Z. Hu, Free vibration of layered magneto–electro-elastic beams by SS–DSC approach. Compos. Struct. 125, 96–103 (2015)

    Article  Google Scholar 

  9. E. Pan, F. Han, Exact solution for functionally graded and layered magneto–electro-elastic plates. Int. J. Eng. Sci. 43(3), 321–339 (2005)

    Article  Google Scholar 

  10. D.J. Huang, H.J. Ding, W.Q. Chen, Analytical solution for functionally graded magneto–electro-elastic plane beams. Int. J. Eng. Sci. 45(2), 467–485 (2007)

    Article  Google Scholar 

  11. C.P. Wu, Y.H. Tsai, Static behavior of functionally graded magneto–electro-elastic shells under electric displacement and magnetic flux. Int. J. Eng. Sci. 45(9), 744–769 (2007)

    Article  Google Scholar 

  12. X.Y. Li, H.J. Ding, W.Q. Chen, Three-dimensional analytical solution for functionally graded magneto–electro-elastic circular plates subjected to uniform load. Compos. Struct. 83(4), 381–390 (2008)

    Article  Google Scholar 

  13. S.C. Kattimani, M.C. Ray, Control of geometrically nonlinear vibrations of functionally graded magneto–electro-elastic plates. Int. J. Mech. Sci. 99, 154–167 (2015)

    Article  Google Scholar 

  14. J. Sladek, V. Sladek, S. Krahulec, C.S. Chen, D.L. Young, Analyses of circular magneto–electro-elastic plates with functionally graded material properties. Mech. Adv. Mater. Struct. 22(6), 479–489 (2015)

    Article  Google Scholar 

  15. L.L. Ke, Y.S. Wang, Free vibration of size-dependent magneto–electro-elastic nanobeams based on the nonlocal theory. Phys. E 63, 52–61 (2014)

    Article  Google Scholar 

  16. L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent magneto–electro-elastic nanoplates based on the nonlocal theory. Acta. Mech. Sin. 30(4), 516–525 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magneto–electro-elastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014)

    Article  Google Scholar 

  18. R. Ansari, E. Hasrati, R. Gholami, F. Sadeghi, Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro-thermo elastic nanobeams. Compos. Part B Eng. (2015)

  19. B. Wu, C. Zhang, W. Chen, C. Zhang, Surface effects on anti-plane shear waves propagating in magneto–electro-elastic nanoplates. Smart Mater. Struct. 24(9), 095017 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Şimşek, H.H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  21. O. Rahmani, O. Pedram, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014)

    Article  MathSciNet  Google Scholar 

  22. A. Zemri, M.S.A. Houari, A.A. Bousahla, A. Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct. Eng. Mech. 54(4), 693–710 (2015)

    Article  Google Scholar 

  23. F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos. B Eng. 78, 272–290 (2015)

    Article  Google Scholar 

  24. F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos. Struct. 128, 363–380 (2015)

    Article  Google Scholar 

  25. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  28. K.S. Na, J.H. Kim, Three-dimensional thermal buckling analysis of functionally graded materials. Compos. B Eng. 35(5), 429–437 (2004)

    Article  Google Scholar 

  29. Y. Ootao, Y. Tanigawa, Transient analysis of multilayered magneto–electro–thermo-elastic strip due to nonuniform heat supply. Compos. Struct. 68(4), 471–480 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Barati, M.R. Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl. Phys. A 122, 451 (2016). https://doi.org/10.1007/s00339-016-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0001-3

Keywords

Navigation