Skip to main content
Log in

The electrocaloric effect and thermal stability of 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 modified by WO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The solid-state reaction method is used to prepare the 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 modified by WO3 lead-free ceramic. The unpoled (Bi0.5Na0.5)0.94Ba0.06Ti1−(3/2)x W x O3 with pseudo-cubic structure undergoes transition from ferroelectric to relaxor ferroelectric that happens in the T d. The maximum reversible temperature change |ΔT| = 0.8 K occurs at the room temperature due to the decline of temperature. In addition, |ΔT| = 0.15 K at the (Bi0.5Na0.5)0.94Ba0.06Ti1−(3/2)x W x O3 with x = 0.75 mol% exhibits good thermal stability at the temperature range of 303–413 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Sanlialp, V.V. Shvartsman, M. Acosta, B. Dkhil, D.C. Lupascu, Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3–0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl. Phys. Lett. 106(6), 062901 (2015). doi:10.1063/1.4907774

    Article  ADS  Google Scholar 

  2. C. Molin, M. Sanlialp, V.V. Shvartsman et al., Effect of dopants on the electrocaloric effect of 0.92 Pb(Mg1/3Nb2/3)O3–0.08 PbTiO3 ceramics. J. Eur. Ceram. Soc. 35(7), 2065 (2015). doi:10.1016/j.jeurceramsoc.2015.01.016

    Article  Google Scholar 

  3. J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, Z. Kutnjak, Large electrocaloric effect in lead-free K0.5Na0.5NbO3–SrTiO3 ceramics. Appl. Phys. Lett. 106(20), 202905 (2015). doi:10.1063/1.4921744

    Article  ADS  Google Scholar 

  4. P.D. Thacher, Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr, Ti)O3 compounds. J. Appl. Phys. 39(4), 1996 (1968). doi:10.1063/1.1656478

    Article  ADS  Google Scholar 

  5. Z. Luo, D. Zhang, Y. Liu et al., Enhanced electrocaloric effect in lead-free BaTi1−xSnxO3 ceramics near room temperature. Appl. Phys. Lett. 105(10), 102904 (2014). doi:10.1063/1.4895615

    Article  ADS  Google Scholar 

  6. Y. Bai, X. Han, X.C. Zheng, L. Qiao, Both high reliability and giant electrocaloric strength in BaTiO(3) ceramics. Sci. Rep. 3, 2895 (2013). doi:10.1038/srep02895

    ADS  Google Scholar 

  7. S. Lisenkov, I. Ponomareva, Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys from first-principles. Phys. Rev. B 86(10), 104103 (2012). doi:10.1103/PhysRevB.86.104103

    Article  ADS  Google Scholar 

  8. S. Prosandeev, I. Ponomareva, L. Bellaiche, Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles. Phys. Rev. B 78(5), 052103 (2008). doi:10.1103/PhysRevB.78.052103

    Article  ADS  Google Scholar 

  9. M. Valant, L.J. Dunne, A.-K. Axelsson et al., Electrocaloric effect in a ferroelectric Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystal. Phys. Rev. B 81(21), 214110 (2010). doi:10.1103/PhysRevB.81.214110

    Article  ADS  Google Scholar 

  10. Z. Zuo, B. Chen, B. Wang et al., Strain assisted electrocaloric effect in PbZr0.95Ti0.05O3 films on 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 substrate. Sci. Rep. 5, 16164 (2015). doi:10.1038/srep16164

    Article  ADS  Google Scholar 

  11. I. Kriaa, N. Abdelmoula, A. Maalej, H. Khemakhem, Study of the electrocaloric effect in the relaxor ferroelectric ceramic 0.75PMN–0.25PT. J. Electron. Mater. 44(12), 4852 (2015). doi:10.1007/s11664-015-4051-7

    Article  ADS  Google Scholar 

  12. W. Geng, Y. Liu, X. Meng et al., Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Adv. Mater. 27(20), 3165 (2015). doi:10.1002/adma.201501100

    Article  Google Scholar 

  13. A.S. Qz, F. Mischenko, R.W. Scott, N.D. Whatmore, Mathur, giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270 (2006)

    Article  ADS  Google Scholar 

  14. D. Vriami, E. Beaugnon, P. Cool, J. Vleugels, O. Van der Biest, Hydrothermally synthesized BaTiO3 textured in a strong magnetic field. Ceram. Int. 41(4), 5397 (2015). doi:10.1016/j.ceramint.2014.12.104

    Article  Google Scholar 

  15. Q. Xu, T. Li, H. Hao et al., Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35(2), 545 (2015). doi:10.1016/j.jeurceramsoc.2014.09.003

    Article  Google Scholar 

  16. T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559 (2015). doi:10.1111/jace.13325

    Article  Google Scholar 

  17. Y. Liu, J. Wei, P.-E. Janolin, I.C. Infante, X. Lou, B. Dkhil, Giant room-temperature barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3 single crystal. Appl. Phys. Lett. 104(16), 162904 (2014). doi:10.1063/1.4873162

    Article  ADS  Google Scholar 

  18. B. Asbani, J.L. Dellis, A. Lahmar et al., Lead-free Ba0.8Ca0.2(ZrxTi1−x)O3 ceramics with large electrocaloric effect. Appl. Phys. Lett. 106(4), 042902 (2015). doi:10.1063/1.4906864

    Article  ADS  Google Scholar 

  19. W. Bai, L. Li, W. Wang, B. Shen, J. Zhai, Phase diagram and electrostrictive effect in BNT-based ceramics. Solid State Commun. 206, 22 (2015). doi:10.1016/j.ssc.2015.01.004

    Article  Google Scholar 

  20. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35(6), 1659 (2015). doi:10.1016/j.jeurceramsoc.2014.12.013

    Article  Google Scholar 

  21. Q. Li, J. Wang, H. Fan, Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition. Mater. Res. Bull. 74, 57 (2016). doi:10.1016/j.materresbull.2015.10.010

    Article  Google Scholar 

  22. X. Wang, H. Sun, X. Yao, Effect of WO3 doping on dielectric and ferroelectric properties of 0.94Bi0.5Na0.5TiO3–6BaTiO3 ceramics. Ceram. Int. 38S, S373 (2012). doi:10.1016/j.ceramint.2011.05.015

    Google Scholar 

  23. C. Xu, D. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10(7), 934 (2008). doi:10.1016/j.solidstatesciences.2007.11.003

    Article  ADS  Google Scholar 

  24. G.-P. Zheng, Y. Bai, S.-Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull. 46, 1866 (2011). doi:10.1016/j.materresbull.2011.07.038

    Article  Google Scholar 

  25. Y. Bai, G. Zheng, S. Shi, Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction. Appl. Phys. Lett. 96(19), 192902 (2010). doi:10.1063/1.3430045

    Article  ADS  Google Scholar 

  26. M. Aly, Hamad, detecting giant electrocaloric effect in SrxBa1−xNb2O6 single crystals. Appl. Phys. Lett. 100(19), 192908 (2012). doi:10.1063/1.4718350

    Article  ADS  Google Scholar 

  27. T.M. Correia, J.S. Young, R.W. Whatmore, J.F. Scott, N.D. Mathur, Q. Zhang, Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3–PbTiO3 relaxor thin film. Appl. Phys. Lett. 95(18), 182904 (2009). doi:10.1063/1.3257695

    Article  ADS  Google Scholar 

  28. B.C. Bret Neese, S.-G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821 (2008)

    Article  ADS  Google Scholar 

  29. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, J. Rödel, Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3. Appl. Phys. Lett. 102(19), 192903 (2013). doi:10.1063/1.4805360

    Article  ADS  Google Scholar 

  30. J. Yi, L. Zhang, B. Xie, S. Jiang, The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics. J. Appl. Phys. 118(12), 124107 (2015). doi:10.1063/1.4931886

    Article  ADS  Google Scholar 

  31. Q. Li, J. Wang, Z. Liu, G. Dong, H. Fan, Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J. Mater. Sci. 51(2), 1153 (2016). doi:10.1007/s10853-015-9446-6

    Article  ADS  Google Scholar 

  32. Z. Xu, X. Hao, S. An, Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3–SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Alloys Compd. 639, 387 (2015). doi:10.1016/j.jallcom.2015.03.133

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation (51172187), the SPDRF (20116102130002, 20116102120016), the 111 Program (B08040) of MOE, the Xi’an Science and Technology Foundation (XBCL-1-08), the SKLP Foundation (KP201421, KP201523), the Project of Key Areas of Innovation team in Shaanxi Province (No. 2014KCT-12), the Fundamental Research Funds for the Central Universities (3102014JGL01002, 3102014JGY01004), and the Aeronautical Science Foundation of China (2013ZF53072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, Q., Ma, Y. et al. The electrocaloric effect and thermal stability of 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 modified by WO3 . Appl. Phys. A 122, 517 (2016). https://doi.org/10.1007/s00339-016-0044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0044-5

Keywords

Navigation