Skip to main content

Advertisement

Log in

Multi-objective optimization of weld geometry in hybrid fiber laser-arc butt welding using Kriging model and NSGA-II

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An integrated multi-objective optimization approach combining Kriging model and non-dominated sorting genetic algorithm-II (NSGA-II) is proposed to predict and optimize weld geometry in hybrid fiber laser-arc welding on 316L stainless steel in this paper. A four-factor, five-level experiment using Taguchi L25 orthogonal array is conducted considering laser power (P), welding current (I), distance between laser and arc (D) and traveling speed (V). Kriging models are adopted to approximate the relationship between process parameters and weld geometry, namely depth of penetration (DP), bead width (BW) and bead reinforcement (BR). NSGA-II is used for multi-objective optimization taking the constructed Kriging models as objective functions and generates a set of optimal solutions with pareto-optimal front for outputs. Meanwhile, the main effects and the first-order interactions between process parameters are analyzed. Microstructure is also discussed. Verification experiments demonstrate that the optimum values obtained by the proposed integrated Kriging model and NSGA-II approach are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Abe, M. Hayashi, Trends in laser arc combination welding methods. Weld. Int. 16, 94–98 (2002)

    Article  Google Scholar 

  2. C. Bagger, F.O. Olsen, Review of laser hybrid welding. J. Laser Appl. 17, 2–14 (2005)

    Article  ADS  Google Scholar 

  3. A. Mahrle, E. Beyer, Hybrid laser beam welding—classification, characteristics, and applications. J. Laser Appl. 18, 169–180 (2006)

    Article  ADS  Google Scholar 

  4. B. Ribic, T.A. Palmer, T. DebRoy, Problems and issues in laser-arc hybrid welding. Int. Mater. Rev. 54, 223–244 (2009)

    Article  Google Scholar 

  5. M. Baumeister, K. Dickmann, T. HoultFiber, laser micro-cutting of stainless steel sheets. Appl. Phys. A 85, 121–124 (2006)

    Article  ADS  Google Scholar 

  6. L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, C.J. Kong, Welding with high power fiber lasers—a preliminary study. Mater. Design 28, 1231–1237 (2007)

    Article  Google Scholar 

  7. Y. Kawahito, T. Terajima, H. Kimura, T. Kuroda, K. Nakata, S. Katayama, A. Inoue, High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30. Mater. Sci. Eng., B 148, 105–109 (2008)

    Article  Google Scholar 

  8. D.X. Yang, X.Y. Li, D.Y. He, Z.R. Nie, H. Huang, Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach. Opt. Laser Technol. 44, 2020–2025 (2012)

    Article  Google Scholar 

  9. Y. Javadi, S. Sadeghi, M.A. Najafabadi, Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding. Mater. Design 55, 27–34 (2014)

    Article  Google Scholar 

  10. C.W. Chan, H.C. Man, T.M. Yue, Parameter optimization for laser welding of NiTi wires by the Taguchi method. Laser. Eng. 30, 247–265 (2015)

    Google Scholar 

  11. C.N. Patel, P.S. Chaudhary, Parametric optimization of weld strength of metal inert gas welding and tungsten inert gas welding by using analysis of variance and grey relational analysis. Int. J. Res. Mod. Eng. Emerg. Tech. 1, 48–56 (2013)

    Google Scholar 

  12. S. Vijayan, R. Raju, S.R.K. Rao, Multiobjective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis. Mater. Manuf. Process 25, 1206–1212 (2010)

    Article  Google Scholar 

  13. H.R. Kim, K.Y. Lee, Using the orthogonal array with grey relational analysis to optimize the laser hybrid welding of a 6061-T6 Al alloy sheet. Proceedings of the Institution of Mechanical Engineers, Part B: J. Eng. Manuf. 222, 981-987 (2008)

  14. M.M.A. Khan, L. Romoli, M. Fiaschi, G. Dini, F. Sarri, Multiresponse optimization of laser welding of stainless steels in a constrained fillet joint configuration using RSM. Int. J. Adv. Manuf. Tech. 62, 587–603 (2012)

    Article  Google Scholar 

  15. A.K. Lakshminarayanan, V. Balasubramanian, Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. T. Nonferr. Metal. Soc. 19, 9–18 (2009)

    Article  Google Scholar 

  16. K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmi, Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Opt. Laser Technol. 40, 76–87 (2008)

    Article  ADS  Google Scholar 

  17. A. Singh, S. Datta, S.S. Mahapatra, T. Singha, G. Majumdar, Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach. J. Intell. Manuf. 24, 35–44 (2013)

    Article  Google Scholar 

  18. M. Moradi, M. Ghoreishi, J. Frostevarg, A.F.H. Kaplan, An investigation on stability of laser hybrid arc welding. Opt. Laser Eng. 51, 481–487 (2013)

    Article  Google Scholar 

  19. K. Salonitis, P. Stavropoulos, A. Fysikopoulos, G. Chryssolouris, CO2 laser butt-welding of steel sandwich sheet composites. Int. J. Adv. Manuf. Tech. 69, 245–256 (2013)

    Article  Google Scholar 

  20. S. Ghosal, S. Chaki, Estimation and optimization of depth of penetration in hybrid CO2 Laser-MIG welding using ANN-optimization hybrid model. Int. J. Adv. Manuf. Tech. 47, 1149–1157 (2009)

    Article  Google Scholar 

  21. P. Sathiya, K. Panneerselvam, R. Soundararajan, Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel. Opt. Laser Technol. 44, 1905–1914 (2012)

    Article  ADS  Google Scholar 

  22. D. Katherasan, J.V. Elias, P. Sathiya, A.N. Haq, Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J. Intell. Manuf. 25(1), 67–76 (2014)

    Article  Google Scholar 

  23. O.E. Canyurt, H.R. Kim, K.Y. Lee, Estimation of laser hybrid welded joint strength by using genetic algorithm approach. Mech. Mater. 40, 825–831 (2008)

    Article  Google Scholar 

  24. Q. Zhou, P. Jiang, X.Y. Shao, Z.M. Gao, L.C. Cao, C. Yue, X.B. Li, Optimization of process parameters of hybrid laser–arc welding onto 316L using ensemble of metamodels. Metall. Mater. Trans. B (2016). doi:10.1007/s11663-016-0664-3

    Google Scholar 

  25. P. Jiang, L.C. Cao, Q. Zhou, Z.M. Gao, Y.M. Rong, X.Y. Shao, Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. Int. J. Adv. Manuf. Tech. (2016). doi:10.1007/s00170-016-8382-1

    Google Scholar 

  26. S. Chaki, B. Shanmugarajan, S. Ghosal, G. Padmanabham, Application of integrated soft computing techniques for optimisation of hybrid CO2 laser-MIG welding process. Appl. Soft Comput. 30, 365–374 (2015)

    Article  Google Scholar 

  27. N.K. Lim, Optimization of TIG weld geometry using a Kriging surrogate model and Latin hypercube sampling for data generation. (Department of Mechanical and Aerospace Engineering, California State University, Long Beach, USA, 2014)

  28. J.G. Fang, Y.K. Gao, G.Y. Sun, C.M. Xu, Y.T. Zhang, Q. Li, Optimization of spot-welded joints combined artificial bee colony algorithm with sequential kriging optimization. Adv. Mech. Eng. 6, 1–10 (2014)

    Google Scholar 

  29. I. Andonegui, I. Calvo, A.J. Garcia-Adeva, Inverse design and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits. Appl. Phys. A 115, 433–438 (2014)

    Article  ADS  Google Scholar 

  30. W.Y. Ming, Z. Zhang, G.J. Zhang, Y. Huang, J.W. Guo, Y. Chen, Multi-objective optimization of 3D-surface topography of machining YG15 in WEDM. Mater. Manuf. Process 29, 514–525 (2014)

    Article  Google Scholar 

  31. S. Chaki, R.N. Bathe, S. Ghosal, G. Padmanabham, Multi-objective optimisation of pulsed Nd:YAG laser cutting process using integrated ANN-NSGAII model. J. Intell. Manuf. (2015). doi:10.1007/s10845-015-1100-2

    Google Scholar 

  32. J.D. Poirier, S.S. Vel, V. Caccese, Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm. Eng. Struct. 49, 508–524 (2013)

    Article  Google Scholar 

  33. K. Siva-Prasad, C.S. Rao, D.N. Rao, Multi objective optimization of weld bead geometry parameters of pulsed current micro plasma arc welded inconel 625 using enhanced non-dominated sorting genetic algorithm. J Mater Metall Eng 3, 17–24 (2013)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the National Basic Research Program (973 Program) of China under Grant No. 2014CB046703, the National Natural Science Foundation of China (NSFC) under Grant Nos. 51323009 and 51121002, and the Fundamental Research Funds for the Central Universities, HUST: Grant No. 2014TS040. The authors also would like to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Shao, X., Jiang, P. et al. Multi-objective optimization of weld geometry in hybrid fiber laser-arc butt welding using Kriging model and NSGA-II. Appl. Phys. A 122, 610 (2016). https://doi.org/10.1007/s00339-016-0144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0144-2

Keywords

Navigation