Skip to main content
Log in

On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT) have been proven to be of high quality, but their use is very limited due to difficulties in obtaining them in a clean and undamaged form. Here, we present a simple method that purifies raw AD-MWNT material in laboratory scale without damage, and that in principle can be scaled up. The method consists of depositing raw AD-MWNT material on a flat substrate and immersing the substrate slowly in water, whereby the surface tension force of the liquid–substrate contact line selectively sweeps away the larger amorphous carbon debris and leaves relatively clean MWNTs on the substrate. We demonstrate the utility of the method by preparing clean individual MWNTs for measurement of their Raman spectra. The spectra exhibit the characteristics of high-quality tubes free from contaminants. We also show how one concomitantly with the purification process can obtain large numbers of clean suspended MWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon 49, 8 (2011)

    Article  Google Scholar 

  2. M. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, C. Schonenberger, Phys. Rev. Lett. 88, 15 (2002)

    Article  Google Scholar 

  3. D. Mtsuko, A. Koshio, M. Yudasaka, S. Iijima, M. Ahlskog, Phys. Rev. B 91, 19 (2015)

    Article  Google Scholar 

  4. R. Tarkiainen, M. Ahlskog, A. Zyuzin, P. Hakonen, M. Paalanen, Phys. Rev. B 69, 3 (2004)

    Article  Google Scholar 

  5. H. Jackman, P. Krakhmalev, K. Svensson, J. Appl. Phys. Lett. 117, 8 (2015)

    Google Scholar 

  6. J. Cumings, A. Zettl, Phys. Rev. Lett. 93, 8 (2004)

    Article  Google Scholar 

  7. X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, H. Dai, Nat. Nanotechnol. 6, 9 (2011)

    Article  Google Scholar 

  8. P.X. Hou, C. Liu, H.M. Cheng, Carbon 46, 15 (2008)

    Google Scholar 

  9. M.J. Hokkanen, R. Lehto, J. Takalo, J. Salmela, S. Haavisto, A. Bykov, R. Myllyl, J. Timonen, M. Ahlskog, Colloids Surf. A 482, 624–30 (2015)

    Article  Google Scholar 

  10. B. Bhushan, in Springer Handbook of Nanotechnology, 2nd edn., ed. by B. Bhusnan (Springer, Berlin, 2010), pp. 1387–1388

    Chapter  Google Scholar 

  11. A.F.M. Leenaars, S.B.G. O’Brien, Philips J. Res. 44, 2–3 (1989)

    Google Scholar 

  12. P. Sharma, M. Flury, J. Zhou, J. Colloid Interface Sci. 326, 1 (2008)

    Article  Google Scholar 

  13. M.C. LeMieux, M. Roberts, S. Barman, Y.W. Jin, J.M. Kim, Z. Bao, Science 321, 5885 (2008)

    Google Scholar 

  14. S. Aramrak, M. Flury, J.B. Harsh, Langmuir 27, 16 (2011)

    Article  Google Scholar 

  15. V. Lazouskaya, L.P. Wang, D. Or, G. Wang, J.L. Caplan, Y. Jin, J. Colloid Interface Sci. 406, 44–50 (2013)

    Article  Google Scholar 

  16. G.W. Gale, R.J. Small, K.A. Reinhardt, in Handbook of Silicon Wafer Cleaning Technolog, 2nd edn., ed. by K.A. Reinhardt, W. Kern (William Andrew Inc., Norwich, 2008), p. 307

    Google Scholar 

  17. P. Yi, K.L. Chen, Environ. Sci. Technol. 47, 21 (2013)

    Google Scholar 

  18. A. Bensimon, A.J. Simon, A. Chiffaudel, V. Croquette, F. Heslot, D. Bensimon, Science 265, 5181 (1994)

    Article  Google Scholar 

  19. S. Gerdes, T. Ondarcuhu, S. Cholet, C. Joachim, Europhys. Lett. 48, 3 (1999)

    Article  Google Scholar 

  20. Y.J. Shin, Y. Wang, H. Huang, G. Kalon, A.T.S. Wee, Z. Shen, C.S. Bhatia, H. Yang, Langmuir 26, 6 (2010)

    Article  Google Scholar 

  21. J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan, N.A. Koratkar, Nat. Mater. 11, 3 (2012)

    Article  Google Scholar 

  22. J.F. Joanny, P.G. de Gennes, J. Chem. Phys. 81, 1 (1984)

    Article  Google Scholar 

  23. N. Chatterjee, M. Flury, Langmuir 29, 25 (2013)

    Google Scholar 

  24. S. Aramrak, M. Flury, J.B. Harsh, R.L. Zollards, H.P. Davis, Langmuir 29, 19 (2013)

    Article  Google Scholar 

  25. D. Bensimon, A.J. Simon, V. Croquette, A. Bensimon, Phys. Rev. Lett. 74, 23 (1995)

    Article  Google Scholar 

  26. C.Y. Khripin, M. Zheng, A. Jagota, J. Colloid Interface Sci. 330, 2 (2009)

    Article  Google Scholar 

  27. X. Zhao, Y. Ando, L.C. Qin, H. Kataura, Y. Maniwa, R. Saito, Appl. Phys. Lett. 81, 41 (2002)

    Google Scholar 

  28. S. Nanot, M. Millot, B. Raquet, J.M. Broto, A. Margrez, J. Gonzales, Phys. E 42, 9 (2010)

    Article  Google Scholar 

  29. X. Hou, L. Sheng, L. Yu, K. An, Y. Ando, X. Zhao, J. Raman Spectrosc. 43, 10 (2012)

    Article  Google Scholar 

  30. M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010)

    Article  ADS  Google Scholar 

  31. S.N. Bokova, E.D. Obraztsova, V.V. Grebenyukov, K.V. Elumeeva, A.V. Ishchenko, V.L. Kuznetsov, Phys. Status Solidi B 247, 11–12 (2010)

    Article  Google Scholar 

  32. Y. Chen, Y. Zhang, Y. Hu, L. Kang, S. Zhang, H. Xie, D. Liu, Q. Zhao, Q. Li, J. Zhang, Adv. Mater. 26, 34 (2014)

    Google Scholar 

Download references

Acknowledgments

M.Sc. Hannu Pasanen is acknowledged for his help with the preliminary experiments, and M.Sc. Roope Lehto and Prof. Jussi Timonen for useful discussions. Dr. Sami Malola is acknowledged for producing the 3D illustration in Fig. 7b. Author Matti J. Hokkanen gratefully acknowledges financial support from the Finnish National Graduate School in Material Physics (NGSMP) and the National Doctoral Programme in Nanoscience (NGS-NANO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Ahlskog.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hokkanen, M.J., Lautala, S., Shao, D. et al. On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes. Appl. Phys. A 122, 634 (2016). https://doi.org/10.1007/s00339-016-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0154-0

Keywords

Navigation