Skip to main content
Log in

ISM (Industrial Scientific and Medical standard) band flex fuel sensor using electrical metamaterial device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A stand-alone device working on the electrical metamaterial concept, operating at 2.47 GHz (ISM band), using merely 10 μL sample is proposed to detect petrol/ethanol ratio in given hybrid fuel. Systematic shifts in the transmission frequency as well as magnitude are observed, up to a maximum of ~160 MHz and 12 dBm with the hybrid fuels. The sensing was fast with an instantaneous recovery, promising an accurate and sensitive device of detection of flex fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  2. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  ADS  Google Scholar 

  3. Y. Dong, T. Itoh, Metamaterial-based antennas. Proc. IEEE 100, 2271–2285 (2012)

    Article  Google Scholar 

  4. Y. Dong, T. Itoh, Promising future of metamaterials. IEEE Microw. Mag. 13, 39–56 (2012)

    Article  Google Scholar 

  5. J.B. Pendry, Photonics: metamaterials in the Sunshine. Nat. Mater. 5, 599–600 (2006)

    Article  ADS  Google Scholar 

  6. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Schüßler, C. Mandel, M. Puentes, R. Jakoby, Metamaterial inspired microwave sensors. IEEE Microw. Mag. 13, 57–68 (2012)

    Article  Google Scholar 

  8. M. Huang, J. Yang, Microwave Sensor Using Metamaterials In Wave Propagation (In-tech Press, Vienna, 2011)

    Google Scholar 

  9. T. Chen, S. Li, H. Sun, Metamaterials application in sensing. Sensors 12, 2742–2765 (2012)

    Article  Google Scholar 

  10. A.K. Horestani, C. Fumeaux, S.F. Al-Sarawi, D. Abbott, Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sens. J. 13, 1153–1160 (2013)

    Article  Google Scholar 

  11. J. Naqui, M. Durán-Sindreu, F. Martín, Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sens. (Basel) 11, 7545–7553 (2011)

    Article  Google Scholar 

  12. A.K. Horestani, D. Abbott, C. Fumeaux, Rotation sensor based on horn-shaped split ring resonator. IEEE Sens. J. 13, 3014–3015 (2013)

    Article  Google Scholar 

  13. R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, Metamaterial-based wireless RF-MEMS strain sensors. In 2010 IEEE Sens. 2173–2176 (2010)

  14. J. Li, C.M. Shah, W. Withayachumnankul, B.S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, D. Abbott, Flexible terahertz metamaterials for dual-axis strain sensing. Opt. Lett. 38, 2104–2106 (2013)

    Article  ADS  Google Scholar 

  15. M. Schussler, C. Mandel, M. Puentes, R. Jakoby, Capacitive level monitoring of layered fillings in vessels using composite right/left-handed transmission lines. In 2011 IEEE MTT-S Int. Microw. Symp. IEEE 1–4, 2011

  16. M. Boybay, O.M. Ramahi, Material characterization using complementary split-ring resonators. IEEE Trans. Instrum. Meas. 61, 3039–3046 (2012)

    Article  Google Scholar 

  17. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, D. Abbott, High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 14, 1345–1351 (2014)

    Article  Google Scholar 

  18. V. Rawat, S. Dhobale, S.N. Kale, Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators. J. Appl. Phys. 116, 164106 (2014)

    Article  ADS  Google Scholar 

  19. V. Rawat, R. Kitture, D. Kumari, H. Rajesh, S. Banerjee, S.N. Kale, Hazardous materials sensing: an electrical metamaterial approach. J. Magn. Magn. Mater. (2015). doi:10.1016/j.jmmm.2015.11.023

    Google Scholar 

  20. H.-J. Lee, J.-H. Lee, H.-S. Moon, I.-S. Jang, J.-S. Choi, J.-G. Yook, H.-I. Jung, A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sens. Actuators B Chem. 169, 26–31 (2012)

    Article  Google Scholar 

  21. A.W. Clark, A. Glidle, D.R.S. Cumming, J.M. Cooper, Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 131, 17615–17619 (2009)

    Article  Google Scholar 

  22. J. Bachmann, A. Fahrenbruch, Ethanol sensors for flex fuel operations. MTZ Worldw. 69, 46–49 (2008)

    Google Scholar 

  23. F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, M. Beruete, F. Martın, Babinet principle applied of the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 1974011 (2004)

    Article  Google Scholar 

  24. F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín, M. Sorolla, Effective negative-∈ stopband microstrip lines based on complementary split ring resonators. In: Proc. IEEE Microw. Wirel. Compon. Lett. 14: 280–282 (2004)

  25. J.D. Baena, J. Bonache, F. Martın, R.M. Sillero, F. Falcone, T. Lopetegi, M.A.G. Laso, J. Garcıa-Garcıa, I. Gil, M.F. Portillo, M. Sorolla, Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Tech. 53, 1451–1461 (2005)

    Article  ADS  Google Scholar 

  26. Y.D. Dong, T. Yang, T. Itoh, Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters. IEEE Trans. Microw. Theory Tech. 57, 2211–2223 (2009)

    Article  ADS  Google Scholar 

  27. A. Technologies, Agilent 85070E dielectric probe kit 200 MHz to 50 GHz swept high-frequency dielectric measurements. http://cp.literature.agilent.com/litweb/pdf/5989-0222EN.pdf

  28. C.A. Balanis, Advanced Engineering Electromagnetics, 2nd edn. (Wiley, New York, 2012), p. 78

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Vice-Chancellor, DIAT, for support, KPIT Technologies for providing standard hybrid fuels data and Dr. Harsh Rajesh, SAMEER, Mumbai, for dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, V., Nadkarni, V. & Kale, S.N. ISM (Industrial Scientific and Medical standard) band flex fuel sensor using electrical metamaterial device. Appl. Phys. A 123, 75 (2017). https://doi.org/10.1007/s00339-016-0695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0695-2

Keywords

Navigation