Skip to main content
Log in

Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A charge plasma technique based dopingless (DL) accumulation mode (AM) junctionless (JL) cylindrical surrounding gate (CSG) MOSFET has been proposed and extensively investigated. Proposed device has no physical junction at source to channel and channel to drain interface. The complete silicon pillar has been considered as undoped. The high free electron density or induced N+ region is designed by keeping the work function of source/drain metal contacts lower than the work function of undoped silicon. Thus, its fabrication complexity is drastically reduced by curbing the requirement of high temperature doping techniques. The electrical/analog characteristics for the proposed device has been extensively investigated using the numerical simulation and are compared with conventional junctionless cylindrical surrounding gate (JL-CSG) MOSFET with identical dimensions. For the numerical simulation purpose ATLAS-3D device simulator is used. The results show that the proposed device is more short channel immune to conventional JL-CSG MOSFET and suitable for faster switching applications due to higher I ON/I OFF ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.P. Colinge, C.-W. Lee, A. Afzalian et al., Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  ADS  Google Scholar 

  2. Z. Chen, Y. Xiao, M. Tang et al., Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Dev. 59(12), 3292–3298 (2012)

    Article  ADS  Google Scholar 

  3. M.-H. Han, C.-Y. Chang, H.-B. Chen et al., Device and circuit performance estimation of junctionless bulk FinFETs. IEEE Trans. Electron Dev. 60(6), 1807–1813 (2013)

    Article  ADS  Google Scholar 

  4. S. Barraud, M. Berthome, R. Coquand et al., Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm. IEEE Electron Dev. Lett. 33(9), 1225–1227 (2012)

    Article  ADS  Google Scholar 

  5. C.W. Lee, A.N. Nazarov, I. Ferain et al., Low subthreshold slope in junctionless multiple gate transistors. Appl. Phys. Lett. 96(2), 102106-1–102106-3 (2010)

    Article  ADS  Google Scholar 

  6. G. Leung, C.O. Chui, Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Dev. Lett. 33(6), 767–769 (2012)

    Article  ADS  Google Scholar 

  7. A. Gnudi, S. Reggiani, E. Gnani et al., Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electron Dev. Lett. 33(3), 336–338 (2012)

    Article  ADS  Google Scholar 

  8. M. Aldegunde, A. Martinez, J.R. Barker, Study of discrete doping induced variability in junctionless nanowire MOSFETs using dissipative quantum transport simulations. IEEE Electron Dev. Lett. 33(2), 194–196 (2012)

    Article  ADS  Google Scholar 

  9. S.-J. Choi, M. Dong-Il, S. Kim et al., Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Dev. Lett. 32(2), 125–127 (2011)

    Article  ADS  Google Scholar 

  10. N. Trivedi, M. Kumar, S. Haldar, S.S. Deswal, M. Gupta, R.S. Gupta, Analytical modelling of junctionless accumulation mode MSOFET (JAM-CSG). Int. J. Numer. Model. Electron. Netw. Dev. Fields (2016). doi:10.1002/jnm.2162

    Google Scholar 

  11. M. Parihar, D. Ghosh, A. Kranti, Single transistor latch phenomenon in junctionless transistors. J. Appl. Phys. 113(18), 184503-1–184503-5 (2013)

    ADS  Google Scholar 

  12. B. Rajasekharan, R.J.E. Hueting, C. Salm et al., Fabrication and characterization of the charge-plasma diode. IEEE Electron Dev. Lett. 31(6), 528–530 (2010)

    Article  ADS  Google Scholar 

  13. R.J.E. Hueting, B. Rajasekharan, C. Salm et al., Charge plasma P–N diode. IEEE Electron Dev. Lett. 29(12), 1367–1368 (2008)

    Article  ADS  Google Scholar 

  14. M.J. Kumar, K. Nadda, Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Dev. 59(4), 962–967 (2012)

    Article  ADS  Google Scholar 

  15. C. Sahu, J. Singh, Charge-plasma based process variation immune junctionless transistor. IEEE Electron Dev. Lett. 35(3), 411–413 (2014)

    Article  ADS  Google Scholar 

  16. C. Shan, Y. Wang, M.T. Bao, A charge-plasma-based transistor with induced graded channel for enhanced analog performance. IEEE Trans. Electron Dev. 63(6), 2275–2281 (2016)

    Article  ADS  Google Scholar 

  17. N. Trivedi, M. Kumar, S. Haldar, S.S. Deswal, M. Gupta, R.S. Gupta, Analytical modeling simulation and characterization of short channel junctionless accumulation mode surrounding gate (JLAMSG) MOSFET for improved Analog/RF performance. Superlattic. Microstruct. 100, 1263–1275 (2016)

    Article  Google Scholar 

  18. SILVACO Int (2015) Santa Clara, CA, Atlas 3D device simulator

  19. Y. Pratap, S. Haldar, M. Gupta, Performance evaluation and reliability issue of junctionless CSG MOSFET for RFIC design. Electron Dev. IEEE Trans. 59(12), 418–424 (2014)

    Google Scholar 

  20. M.S. Parihar, D. Ghosh, A. Kranti, Ultra low power junctionless MOSFET’s for Subthreshold logic applications. Electron Dev. IEEE Trans. 60(5), 1540–1546 (2013)

    Article  ADS  Google Scholar 

  21. S. Dubey, P.K. Tiwari, S. Jit, On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile. J. Semicond. 34(5), 1–8 (2013)

    Article  Google Scholar 

  22. H. Lou, L. Zhang, Y. Lin, S. Yang, J. He, M. Chan, A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Dev. 59(7), 1829–1836 (2012)

    Article  ADS  Google Scholar 

  23. G.S. Kumar, B. Srimanta, Novel characteristics of junction less dual metal cylindrical surround gate (JLDM CSG) MOSFET. Res. Sci. J. 2(1), 44–52 (2013)

    Google Scholar 

  24. S. Cho et al., A RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. Electron Dev. IEEE Trans. 58(5), 1388–1396 (2011)

    Article  ADS  Google Scholar 

  25. M. Kumar, S. Haldar, M. Gupta, R.S. Gupta, A new T-shaped source/drain extension (T-SSDE) gate underlap GAA MOSFET with enhance subthreshold analog/RF performance for low power applications. Solid State Electron. 101, 13–17 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. Nitin Trivedi, is grateful to CSIR for providing financial assistance to carry out this research work. Authors are also grateful to the Director, Maharaja Agrasen Institute of Technology, for providing the facilities to carryout this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Trivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, N., Kumar, M., Haldar, S. et al. Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement. Appl. Phys. A 123, 564 (2017). https://doi.org/10.1007/s00339-017-1176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1176-y

Navigation