Skip to main content
Log in

Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Si nanopillars (SiNPLs) were fabricated using a novel vapor phase metal-assisted chemical etching (V-Mace) and nanosphere lithography. The temperature dependent current–voltage (I–V) characteristics have been studied over a broad temperature range 170–360 K. The SiNPLs show a Schottky diode-like behavior at a temperature below 300 K and the rectification (about two orders of magnitude) is more prominent at temperature < 210 K. The electrical properties are discussed in detail using Cheung’s and Norde methods, and the Schottky diode parameters, such as barrier height, ideality factor, series resistance, are carefully figured out and compared with different methods. Moreover, the light sensitivity of the SiNPLs has been studied using I–V characteristics in dark and under the illumination of white light and UV light. The SiNPLs show fast response to the white light and UV light (response time of 0.18 and 0.26 s) under reverse bias condition and the mechanism explained using band diagram. The ratio of photo-to-dark current shows a peak value of 9.8 and 6.9 for white light and UV light, respectively. The Si nanopillars exhibit reflectance < 4% over the wavelength region 250–800 nm with a minimum reflectance of 2.13% for the optimized sample. The superior light absorption of the SiNPLs induced fast response in the I–V characteristics under UV light and white light. The work function of the SiNPLs in dark and under illumination has been also studied using Kelvin probe to confirm the light sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163–168 (2008)

    Article  ADS  Google Scholar 

  2. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85–88 (2006)

    Article  Google Scholar 

  3. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano Lett. 8, 4191–4195 (2008)

    Article  ADS  Google Scholar 

  4. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137–2184 (2014)

    Article  Google Scholar 

  5. B. Kiraly, S. Yang, T. Huang, J. Nanotechnol. 24, 245704–245705 (2013)

    Article  ADS  Google Scholar 

  6. J. Bae, H. Kim, X.M. Zhang, C.H. Dang, Y. Zhang, Y.J. Choi, A. Nurmikko, Z.L. Wang, Nanotechnology 21, 095502–095505 (2010)

    Article  ADS  Google Scholar 

  7. P. Karadan, A.A. Anappara, V.H.S. Moorthy, N. Chandrabhas, H.C. Barshilia, RSC Adv. 6, 109157–109170 (2016)

    Article  Google Scholar 

  8. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, J. Nanophoton. 1, 13552–13555 (2007)

    Article  Google Scholar 

  9. N.P. Koboyashi, S.Y. Wang, C. Santori, R.S. Williams, Appl. Phys. A Mater. Sci. Process. 85, 1–6 (2006)

    Article  ADS  Google Scholar 

  10. Y.L. Chueh, Z.Y. Fan, K. Takei, H. Ko, R. Kapadia, A.A. Rathore, N. Miller, K. Yu, M. Wu, E.E. Haller, A. Javey, Nano Lett. 10, 520–523 (2010)

    Article  ADS  Google Scholar 

  11. A. Gin, B. Movaghar, M. Razeghi, G.J. Brown, Nanotechnology 16, 1814–1820 (2005)

    Article  ADS  Google Scholar 

  12. W. Xu, C.S. Ozkan, Nano Lett. 8, 398–404 (2008)

    Article  ADS  Google Scholar 

  13. R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Nanotechnology 25, 045703–045705 (2014)

    Article  ADS  Google Scholar 

  14. X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805-4 (2004)

    ADS  Google Scholar 

  15. S. Grego, K.H. Gilchrist, J.Y. Kim, M.K. Kwon, M.S. Islam, Proc. SPIE 7406, 74060–74069 (2009)

    Article  ADS  Google Scholar 

  16. V. Schmidt, J.V. Witteman, S. Senz, U. Gosele, Adv. Mater. 21, 2681–2702 (2009)

    Article  Google Scholar 

  17. V. Gowrishankar, S.R. Scully, A.T. Chan, M.D. McGehee, Q. Wang, H.M.J. Branz, Appl. Phys. 103, 064511–064511 (2008)

    Article  Google Scholar 

  18. W. Wei, X.Y. Bao, C. Soci, Y. Ding, Z.L. Wang, D. Wang, Nano Lett. 9, 2926–2934 (2009)

    Article  ADS  Google Scholar 

  19. C.J. Novotny, E.T. Yu, P.K.L. Yu, Nano Lett. 8, 775–779 (2008)

    Article  ADS  Google Scholar 

  20. C. Kung, W.E. Van Der Veer, F. Yang, K.C. Donavan, R.M. Penner, Nano Lett. 10, 1481–1485 (2010)

    Article  ADS  Google Scholar 

  21. A.D. Bartolomeo, F. Giubileo, G.L. Go, L. Lemmo, N. Martucciello, G. Niu, M. Fraschke, O. Skibitzki. T. Schroeder, G. Lupina, 2D Mater. 4, 01024–01011 (2017)

    Article  Google Scholar 

  22. D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, W. Chen, Small 37, 4859–4836 (2015)

  23. X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, Small 12, 565–601 (2016)

    Google Scholar 

  24. T. Jiao, D. Wei, J. Liu, W. Sun, S. Jia, W. Zhang, Y. Feng, H. Shi, C. Du, RSC Adv. 5, 73202–73206 (2015)

    Article  Google Scholar 

  25. Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nat. Nanotechnol. 1, 186–189 (2006)

    Article  ADS  Google Scholar 

  26. H. Schmid, M.T. Bjork, J. Knoch, H. Riel, W. Riess, P. Rice, T. Topuria, J. Appl. Phys. 103, 024304–024306 (2008)

    Article  ADS  Google Scholar 

  27. K. Omar, Y. Al-Douri, A. Ramizy, Z. Hassan, Superlattices Microstruct. 50, 119–127 (2011)

    Article  ADS  Google Scholar 

  28. Z. Huang, H. Fang, J. Zhu, Adv. Mater. 19, 744–748 (2007)

    Article  Google Scholar 

  29. P. Karadan, S. John, A.A. Anappara, N. Chandrabhas, H.C. Barshilia, Appl. Phys. A 22, 669–674 (2016)

    Article  ADS  Google Scholar 

  30. Y. Li, C. Duan, Langmuir 31, 12291–12299 (2015)

    Article  Google Scholar 

  31. K.Q. Peng, Z.P. Huang, J. Zhu, Adv. Mater. 16, 73–76 (2004)

    Article  Google Scholar 

  32. O.J. Hildreth, D.R. Schmidt, Adv. Funct. Mater. 4, 129–126 (2014)

    Google Scholar 

  33. A. Kumar, S. Siddhanta, H.C. Barshilia, Sol. Energy 129, 147–155 (2016)

    Article  ADS  Google Scholar 

  34. A. Kumar, H. Chaliyawala, S. Siddhanta, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 145, 432–439 (2015)

    Article  Google Scholar 

  35. W.K. Choi, T.H. Liew, M.K. Dawood., H.I. Smith, C.V. Thompson, M.H. Hong, Nano Lett. 8, 3799–3802 (2008)

    Article  ADS  Google Scholar 

  36. Z.P. Huang, Y. Wu, H. Fang, J. Zhu, Nanotechnology 17, 3768–3774 (2006)

    Article  ADS  Google Scholar 

  37. A. Kumar, S. Samantha, S. Latha, A.K. Debnath, A. Singh, K.P. Muthe, H.C. Barshia, RSC Adv. 7, 4135–4143 (2017)

    Article  Google Scholar 

  38. O.Y. Olikh, J. Appl. Phys 118, 024502 (2015)

    Article  ADS  Google Scholar 

  39. R. Padma, V.R. Reddy, Adv. Mater. Lett. 5, 31–38 (2014)

    Article  Google Scholar 

  40. S. Yilmaz, E. Bacaksiz, I. Polat, Y. Atasoy, Curr. Appl. Phys. 12, 1326–1333 (2012)

    Article  ADS  Google Scholar 

  41. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Springer, Berlin, 2003)

    Google Scholar 

  42. S. Karatas, S. Altindal, Sol. Stat. Electron. 49, 1052 (2005)

    Article  ADS  Google Scholar 

  43. A. Gumus, A. Turut, N. Yalcin, J. Appl. Phys. 91, 245 (2002)

    Article  ADS  Google Scholar 

  44. J.H. Werner, H.H. Guttler, J. Appl. Phys. 73, 1315 (1993)

    Article  ADS  Google Scholar 

  45. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)

    Article  ADS  Google Scholar 

  46. A.R. Arehart, B. Moran, J.S. Speck, J.S. Mishra, S.P. Den, S.A. Baars, Ringel, J. Appl. Phys. 100, 023709–023708 (2006)

    Article  ADS  Google Scholar 

  47. N. Yildirim, K. Ejderha, A. Turut, J. Appl. Phys. 108, 114506–114508 (2010)

    Article  ADS  Google Scholar 

  48. S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, T. Jimbo, IEEE 48, 573–580 (2001)

    Google Scholar 

  49. Y. Zhou, D. Wang, C. Ahyi, C.C. Tin, J. Williams, M. Park, N.M. Williams, A. Hanser, E.A. Preble, J. Appl. Phys. 101, 024506–024504 (2007)

    Article  ADS  Google Scholar 

  50. E.V. Kalinina, N.I. Kuznetsov, V.A. Dmitriev, K.G. Irvine, C.H. Carter, J. Electron. Mater. 25, 831–834 (1996)

    Article  ADS  Google Scholar 

  51. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)

    Article  ADS  Google Scholar 

  52. H. Norde, J. Appl. Phys. 50, 5052–5063 (1979)

    Article  ADS  Google Scholar 

  53. I. Goykhman, U. Sassi. B. Desiatov, N. Mazurski, S. Milana, D. De Fazio, A. Eiden, J.B. Khurgin, J. Shappir, U. Levy, A.C. Ferrari, Nano Lett. 16, 3005–3013 (2016)

    Article  ADS  Google Scholar 

  54. E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H.E. Unalan, Appl. Phys. Lett. 103, 083114–083113 (2013)

    Article  ADS  Google Scholar 

  55. Y. Jiang, C. Li, W. Cao, Y. Jiang, S. Shang, C. Xia, Phys. Chem. Chem. Phys. 17, 16784–16790 (2015)

    Article  Google Scholar 

  56. B.V. Zeghbroeck, Principles of Semiconductor Devices, Chap. 4 (2011)

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-NAL for his support and encouragement. BRNS (Project No. U-1-125) is thanked for SRF fellowship to K. P. Dr. Bonu Venkataramana for various discussion. We also thank A. Das and R. Pandian of NCSS, SND, IGCAR, for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish C. Barshilia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

339_2017_1287_MOESM1_ESM.pptx

Supplementary information The schematic diagram for the etching set up, AFM images of SiNPLs are given in supplementary information. (PPTX 760 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadan, P., Parida, S., Kumar, A. et al. Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching. Appl. Phys. A 123, 681 (2017). https://doi.org/10.1007/s00339-017-1287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1287-5

Navigation