Skip to main content
Log in

Room temperature magneto-electric coupling in La–Zn doped Ba1−xLaxFe12−xZnxO19 (x = 0.0–0.4) hexaferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Barium hexaferrite powder samples with substitution of La+3 at Ba+2 and Zn+2 at Fe+3 site, according to the series formula Ba1−xLaxFe12−xZnxO19 (x = 0.0, 0.1, 0.2, 0.3, 0.4) have been prepared by the co-precipitation method. These samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy, Polarization versus electric field loop tracer and vibrating sample magnetometer techniques. XRD patterns and Rietveld refinement indicate the single-phase formation of the magneto-plumbite barium hexaferrite for all the samples. Significant changes in dielectric properties are obtained by the different doping concentration of La and Zn. Ferroelectric loop for all the samples shows the lossy ferroelectric behaviour. Large spontaneous polarization is observed for x = 0.2 sample at room temperature. With increasing La and Zn doping content, the value of saturation magnetization and retentivity increases, and reaches a maximum value of 40.0 emu/gm and 24.0 emu/gm, respectively, for x = 0.2 sample and then decreases. To confirm the magneto-electric coupling, the second-order magneto-electric coupling coefficient β is measured through the dynamic method with the maximum value of ~ 1.69 × 10− 6 mV/cm.Oe2 for x = 0.2 sample at room temperature. The observations of room temperature magneto-electric coupling in these samples are useful for evolution of new multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  2. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004)

    Article  ADS  Google Scholar 

  3. A. Moitra, S. Kim, S.G. Kim, S.C. Erwin, Y.K. Hong, J. Park, Comput. Condens. Matter 1, 45 (2014)

    Article  Google Scholar 

  4. J. Smit, H.P.J. Wijn Ferrites. (Wiley, New York, 1959)

  5. J. Slama, A. Gruskova, M. Papanova, D. Kevicka, R. Dosoudil, V. Jančárik, A. Gonzalez, G. Mendoza, J. Magn. Magn. Mater 272, 385 (2004)

    Article  ADS  Google Scholar 

  6. P. Kumar, A. Gaur, R.K. Kotnala, Ceram. Int. 43, 1180 (2017)

    Article  Google Scholar 

  7. P. Wang, H. Xiang, Phys. Rev. X. 4, 011035 (2014)

    Google Scholar 

  8. G.L. tan, Li. Wei., J. Am. Ceram. Soc. 98, 1812 (2015)

    Article  Google Scholar 

  9. V.G. Kostishyn, L.V. Panina, A.V. Timofeev, L.V. Kozhitov, A.N. Kovalev, A.K. Zyuzin, J. Magn. Magn. Mater 400, 327 (2016)

    Article  ADS  Google Scholar 

  10. Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, T. Kimura, Nat. Mater. 9, 797 (2010)

    Article  ADS  Google Scholar 

  11. Y. Xie, X. Hong, X. Wang, J. Zhao, Y. Gao, Y. Ling, S. Yan, L. Shi, K. Zhang, Synth. Met. 162, 1643 (2012)

    Article  Google Scholar 

  12. S. Ounnunkad, Solid State Commun. 138, 472 (2006)

    Article  ADS  Google Scholar 

  13. C.L. Dube, S.C. Kashyap, D.K. Pandya, D.C. Dube, Phys. Status Solidi Appl. Mater. Sci. 206, 2627 (2009)

    Article  ADS  Google Scholar 

  14. J. van den Brink, D.I. Khomskii, J. Phys. Condens. Matter. 20, 434217 (2008)

    Article  Google Scholar 

  15. S.W. Lee, S.Y. An, I.B. Shim, C.S. Kim, J. Magn. Magn. Mater. 290, 231 (2005)

    Article  ADS  Google Scholar 

  16. E.H. Na, S. Song, Y.M. Koo, H.M. Jang, Acta Mater. 61, 7705 (2013)

    Article  Google Scholar 

  17. Y. Liu, M.G.B. Drew, Y. Liu, J. Wang, M. Zhang, J. Magn. Magn. Mater. 322, 3342 (2010)

    Article  ADS  Google Scholar 

  18. S. Ounnunkad, P. Winotai, S. Phanichphant, J. Electroceramics 16, 357 (2006)

    Article  Google Scholar 

  19. M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaram, Bull. Mater. Sci. 21, 251 (1998)

    Article  Google Scholar 

  20. P. Wartewig, M.K. Krause, P. Esquinazi, S. Rösler, R. Sonntag, J. Magn. Magn. Mater. 192, 83 (1999)

    Article  ADS  Google Scholar 

  21. Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 105, 257201 (2010)

    Article  ADS  Google Scholar 

  22. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author (AG) acknowledges the financial support provided by Council of Scientific and Industrial Research (C.S.I.R.), New Delhi, through Grant No: 03(1370)/16/EMR-II. Author (PK) is thankful to MHRD, Government of India, New Delhi, for providing research fellowship. We are also thankful to chief scientist (R.K Kotnala), NPL Delhi, for providing the magnetic characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Gaur, A. Room temperature magneto-electric coupling in La–Zn doped Ba1−xLaxFe12−xZnxO19 (x = 0.0–0.4) hexaferrite. Appl. Phys. A 123, 732 (2017). https://doi.org/10.1007/s00339-017-1360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1360-0

Navigation