Skip to main content
Log in

Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  ADS  Google Scholar 

  3. H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1999)

    Article  ADS  Google Scholar 

  4. J. Hone, M. Whitney, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103, 2498–2499 (1999)

    Article  Google Scholar 

  5. X.S. Wang, Q.Q. Li, J. Xie, Z. Jin, J.Y. Wang, Y. Li et al., Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 9, 3137–3141 (2009)

    Article  ADS  Google Scholar 

  6. R.Q. Yu, L.W. Chen, Q.P. Liu, J.Y. Lin, K.L. Tan, S.C. Ng et al., Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718–722 (1998)

    Article  Google Scholar 

  7. R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007)

    Article  ADS  Google Scholar 

  8. W.A. de Heer, A. Chatelain, D. Ugarte, A carbon nanotube field emission electron source. Science 270, 1179–1180 (1995)

    Article  ADS  Google Scholar 

  9. J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters. Carbon 40, 1715–1728 (2002)

    Article  Google Scholar 

  10. J.-M. Bonard, K.A. Dean, B.F. Coll, C. Klinke, Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89, 197602–19761-4 (2002)

    Article  ADS  Google Scholar 

  11. K.B.K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.-P. Schnell, L. Gangloff et al., Microwave devices: carbon nanotubes as cold cathodes. Nature 437, 968–968 (2005)

    Article  ADS  Google Scholar 

  12. Y. Chen, D.T. Shaw, X.D. Bai, E.G. Wang, C. Lund, W.M. Lu et al., Hydrogen storage in aligned carbon nanotubes. Appl. Phys. Lett. 78, 2128–2130 (2001)

    Article  ADS  Google Scholar 

  13. J.M. Bonard, T. Stöckli, O. Noury, A. Chatelain, Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl. Phys. Lett. 78, 2775–2777 (2001)

    Article  ADS  Google Scholar 

  14. J.Q. Wei, Y. Jia, Q.K. Shu, Z.Y. Gu, K.L. Wang, D.M. Zhuang et al., Double-walled carbon nanotube solar cells. Nano Lett. 7, 2317–2321 (2007)

    Article  ADS  Google Scholar 

  15. L. Valentini, I. Armentano, J.M. Kenny, C. Cantalini, L. Lozzi, S. Santucci, Sensors for subppm NO2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 82, 961–963 (2003)

    Article  ADS  Google Scholar 

  16. J.V. Veetil, K. Ye, Tailored carbon nanotubes for tissue engineering applications. Biotechnol. Prog. 25, 709–721 (2009)

    Article  Google Scholar 

  17. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou et al., Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)

    Article  ADS  Google Scholar 

  18. Y.H. Wang, J. Lin, C.H.A. Huan, G.S. Chen, Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 79, 680–682 (2001)

    Article  ADS  Google Scholar 

  19. R. Patra, S. Ghosh, E. Sheremet, M. Jha, R.D. Rodriguez, D. Lehmann et al., Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: a potential material for next generation electron sources. J. Appl. Phys. 115, 094302 (2014)

    Article  ADS  Google Scholar 

  20. C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001)

    Article  ADS  Google Scholar 

  21. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212–1214 (1994)

    Article  ADS  Google Scholar 

  22. W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro et al., Aligned carbon nanotube films: production and optical and electronic properties. Science 268, 845–847 (1995)

    Article  ADS  Google Scholar 

  23. T. Kyotani, L.-F. Tsai, A. Tomita, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem. Mater. 8, 2109–2113 (1996)

    Article  Google Scholar 

  24. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos et al., Controlled production of aligned-nanotube bundles. Nature 388, 52–55 (1997)

    Article  ADS  Google Scholar 

  25. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    Article  ADS  Google Scholar 

  26. C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj, Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Commun. 15, 1525–1526 (1998)

    Article  Google Scholar 

  27. B.C. Satishkumar, A. Govindaraj, C.N.R. Rao, Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chem. Phys. Lett. 307, 158–162 (1999)

    Article  ADS  Google Scholar 

  28. S. Huang, L. Dai, A.W.H. Mau, Patterned growth and contact transfer of well-aligned carbon nanotube films. J. Phys. Chem. B 103, 4223–4227 (1999)

    Article  Google Scholar 

  29. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999)

    Article  ADS  Google Scholar 

  30. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan et al., Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303, 467–474 (1999)

    Article  ADS  Google Scholar 

  31. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308–5317 (2001)

    Article  ADS  Google Scholar 

  32. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004)

    Article  ADS  Google Scholar 

  33. V.K. Kayastha, Y.K. Yap, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, High density vertically aligned multiwalled carbon nanotubes with tubular structures. Appl. Phys. Lett. 86, 253105 (2005)

    Article  ADS  Google Scholar 

  34. P. Mahanandia, K.K. Nanda, A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology 19, 155602 (2008)

    Article  ADS  Google Scholar 

  35. L. Qu, F. Du, L. Dai, Preferential syntheses of semiconducting vertically-aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett. 8, 2682–2687 (2008)

    Article  ADS  Google Scholar 

  36. Q. Zhang, M.-Q. Zhao, J.-Q. Huang, Y. Liu, Y. Wang, W.-Z. Qian et al., Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition. Carbon 47, 2600–2610 (2009)

    Article  Google Scholar 

  37. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76, 1776–1778 (2000)

    Article  ADS  Google Scholar 

  38. J.-H. Han, W.-S. Yang, J.-B. Yoo, C.-Y. Park, Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88, 7363–7365 (2000)

    Article  ADS  Google Scholar 

  39. G. Chen, D.H. Shin, T. Iwasaki, H. Kawarada, C.J. Lee, Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology 19, 415703 (2008)

    Article  Google Scholar 

  40. J.L. Silan, D.L. Niemann, B.P. Ribaya, M. Rahman, M. Meyyappan, C.V. Nguyen, Carbon nanotube pillar arrays for achieving high emission current densities. Appl. Phys. Lett. 95, 133111 (2009)

    Article  ADS  Google Scholar 

  41. C. Li, Y. Zhang, M. Mann, D. Hasko, W. Lei, B. Wang et al., High emission current density, vertically aligned carbon nanotube mesh, field emitter array. Appl. Phys. Lett. 97, 113107 (2010)

    Article  ADS  Google Scholar 

  42. H. Liu, Y. Shi, Y. Ding, B. Lu, Investigation of growth properties of patterned and aligned carbon nanotubes for field emitter. Microelectron. Eng. 86, 2236–2240 (2009)

    Article  Google Scholar 

  43. A. Pandey, A. Prasad, J. Moscatello, B. Ulmen, Y.K. Yap, Enhanced field emission stability and density produced by conical bundles of catalyst-free carbon nanotubes. Carbon 48, 287–292 (2010)

    Article  Google Scholar 

  44. A. Pandey, A. Prasad, J.P. Moscatello, Y.K. Yap, Stable electron field emission from PMMA–CNT matrices. ACS Nano 4, 6760–6766 (2010)

    Article  Google Scholar 

  45. S. Sridhar, L. Ge, C.S. Tiwary, A.C. Hart, S. Ozden, K. Kalaga et al., Enhanced field emission properties from CNT arrays synthesized on inconel superalloy. ACS Appl. Mater. Interfaces 6, 1986–1991 (2014)

    Article  Google Scholar 

  46. G. Chen, S. Neupane, W. Li, L. Chen, J. Zhang, An increase in the field emission from vertically aligned multiwalled carbon nanotubes caused by NH3 plasma treatment. Carbon 52, 468–475 (2013)

    Article  Google Scholar 

  47. M. Sreekanth, S. Ghosh, R. Patra, P. Srivastava, Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate. AIP Adv. 5, 067173 (2015)

    Article  ADS  Google Scholar 

  48. M. Sreekanth, S. Ghosh, P. Biswas, S. Kumar, P. Srivastava, Improved field emission from indium decorated multi-walled carbon nanotubes. Appl. Surf. Sci. 383, 84–89 (2016)

    Article  ADS  Google Scholar 

  49. T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995)

    Article  Google Scholar 

  50. Y.C. Choi, K.-I. Min, M.S. Jeong, Novel method of evaluating the purity of multiwall carbon nanotubes using Raman spectroscopy. J. Nanomater. 2013, 1–6 (2013)

    Google Scholar 

  51. S.L.H. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araújo, C. Freire, Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 18, 12784–12796 (2016)

    Article  Google Scholar 

  52. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928)

    Article  ADS  MATH  Google Scholar 

  53. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)

    Article  ADS  Google Scholar 

  54. S. Gupta, Y. Batra, B.R. Mehta, V.R. Satsangi, Study of charge separation and interface formation in a single nanorod CdS-CuxS heterojunction solar cell using kelvin probe force microscopy. Nanotechnology 24, 255703 (2013)

    Article  ADS  Google Scholar 

  55. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)

    Article  Google Scholar 

  56. M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6, 5837–5844 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Prof. Vikram Kumar, Prof. V. D. Vankar, Dr. Ravi Kumar Bommali, Dr. Debalaya Sarker and Ms. Sana Azim for their help and discussions. The financial assistantship from CSIR, FIST (Raman facilities), NRF, and IIT Delhi is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekanth, M., Ghosh, S. & Srivastava, P. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles. Appl. Phys. A 124, 52 (2018). https://doi.org/10.1007/s00339-017-1471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1471-7

Navigation