Skip to main content
Log in

Active metasurface for reconfigurable reflectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metasurfaces relying solely on passive unit cells printed on a dielectric substrate present limited characteristics due to their intrinsic dispersions. A metasurface composed of active unit cells incorporating voltage-controlled varactor diodes, where the dispersion responses of the cells can be tailored, is proposed to overcome the limitations of passive metasurfaces. Two functionalities are numerically and experimentally demonstrated from the active metasurface used as an electronically reconfigurable reflector. First, we show that anomalous reflection properties can be produced within a broad frequency range and second, we show that the direction of the reflected beam can be scanned within an angular range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  2. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  3. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Yu et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  5. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012)

    Article  ADS  Google Scholar 

  6. F. Aieta et al., Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12, 1702 (2012)

    Article  ADS  Google Scholar 

  7. S.L. Sun et al., High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223 (2012)

    Article  ADS  Google Scholar 

  8. C. Pfeiffer et al., Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 14, 2491 (2014)

    Article  ADS  Google Scholar 

  9. X. Ding et al., Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 27, 1195 (2015)

    Article  Google Scholar 

  10. H.F. Ma, G.Z. Wang, G.S. Kong, T.J. Cui, Independent controls of differently-polarized reflected waves by anisotropic metasurfaces. Sci. Rep. 5, 9605 (2015)

    Article  ADS  Google Scholar 

  11. X. Chen et al., Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012)

    Article  ADS  Google Scholar 

  12. F. Aieta et al., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932 (2012)

    Article  ADS  Google Scholar 

  13. X. Ni, S. Ishii, A.V. Kildishev, V.M. Shalaev, Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light Sci. Appl. 2, e72 (2013)

    Article  ADS  Google Scholar 

  14. C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013)

    Article  ADS  Google Scholar 

  15. F. Monticone, N.M. Estakhri, A. Alù, Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 110, 203903 (2013)

    Article  ADS  Google Scholar 

  16. X. Chen et al., Longitudinal multifoci metalens for circularly polarized light. Adv. Opt. Mater. 3, 1201 (2015)

    Article  Google Scholar 

  17. N. Yu, F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014)

    Article  ADS  Google Scholar 

  18. Q. Cheng, H.F. Ma, T.J. Cui, Broadband planar luneburg lens based on complementary metamaterials. Appl. Phys. Lett. 95, 181901 (2009)

    Article  ADS  Google Scholar 

  19. C. Pfeiffer, A. Grbic, A printed, broadband luneburg lens antenna. IEEE Trans. Antennas Propag. 58, 3055 (2010)

    Article  ADS  Google Scholar 

  20. S.N. ADhouibi, A. Burokur, A. de Lustrac, Priou, Compact metamaterial-based substrate-integrated luneburg lens antenna. IEEE Antennas Wirel. Propag. Lett. 11, 1504 (2012)

    Article  ADS  Google Scholar 

  21. S.N. ADhouibi, A. Burokur, A. de Lustrac, Priou, Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions. Appl. Phys. Lett. 102, 024102 (2013)

    Article  ADS  Google Scholar 

  22. S.N. AGhasemi, A. Burokur, A. Dhouibi, de Lustrac, High beam steering in Fabry-Pérot leaky-wave antennas. IEEE Antennas Wireless Propag. Lett. 12, 261 (2013)

    Article  ADS  Google Scholar 

  23. J.P.S. AEpstein, G.V. Wong, Eleftheriades, Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat. Commun. 7, 10360 (2016)

    Article  Google Scholar 

  24. S. Sun et al., Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426 (2012)

    Article  ADS  Google Scholar 

  25. L. Huang et al., Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013)

    Article  ADS  Google Scholar 

  26. X. Ni, A.V. Kildishev, V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013)

    Article  ADS  Google Scholar 

  27. W.T. Chen et al., High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 14, 225 (2014)

    Article  ADS  Google Scholar 

  28. G. Zheng et al., Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308 (2015)

    Article  ADS  Google Scholar 

  29. Y. Huang et al., Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122 (2015)

    Article  ADS  Google Scholar 

  30. N. Yu et al., A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328 (2012)

    Article  ADS  Google Scholar 

  31. Y. Zhao, A. Alù, Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 13, 1086 (2013)

    Article  ADS  Google Scholar 

  32. Y. Yang et al., Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394 (2014)

    Article  ADS  Google Scholar 

  33. L. Huang et al., Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750 (2012)

    Article  ADS  Google Scholar 

  34. Y. AArbabi, M. Horie, A. Bagheri, Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937 (2015)

    Article  ADS  Google Scholar 

  35. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014)

    Article  ADS  Google Scholar 

  36. H.-X. Xu et al., Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016)

    Article  ADS  Google Scholar 

  37. H. Yang et al., A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016)

    Article  ADS  Google Scholar 

  38. H.-X. Xu et al., Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep. 6, 38255 (2016)

    Article  ADS  Google Scholar 

  39. S.V. Hum, M. Okoniewski, R.J. Davies, Realizing an electronically tunable reflectarray using varactor diode-tuned elements. IEEE Microw. Wirel. Compon. Lett 15, 422 (2005)

    Article  Google Scholar 

  40. S.V. Hum, M. Okoniewski, R.J. Davies, Modeling and design of electronically tunable reflectarrays. IEEE Trans. Antennas Propag. 55, 2200 (2007)

    Article  ADS  Google Scholar 

  41. LabVIEW, http://www.ni.com/labview/

  42. ANSYS HFSS (high frequency structure simulator), version 17 (2016)

Download references

Acknowledgements

B. Ratni acknowledges partial support of his PhD works from Airbus Group Innovations. S. N. Burokur acknowledges funding from the FCS Campus Paris-Saclay through the Innovation et Entrepreneuriat—Prématuration 2014 call for the ‘Antenne active pour internet sur mobile’ (AIM) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Nawaz Burokur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratni, B., de Lustrac, A., Piau, GP. et al. Active metasurface for reconfigurable reflectors. Appl. Phys. A 124, 104 (2018). https://doi.org/10.1007/s00339-017-1502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1502-4

Navigation