Skip to main content
Log in

Temperature-dependent physicochemical properties of magnesium ferrites (MgFe2O4)

  • Rapid Communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Physical and electrochemical properties of magnesium ferrite (MgFe2O4) with respect to calcination temperature were investigated. XRD results revealed the increasing degree of crystallinity at different annealing temperatures. SEM images explored the spherical morphology of particles. High intense principal photoluminescence peak situated at 532 nm revealed spinel ferrite system assigned to 3d5 → 3d4 4s transitions of Fe3+ ions. Infrared metal–oxygen vibration observed at 580 and 441 cm−1 revealed tetrahedral and octahedral sites of ferrite system. The product showed highest specific capacitance of 119.50 F/g at scan rate 5 mV/s for the sample annealed at 500 °C and the specific capacitance noticeably decreased for increasing calcination temperature. The calcination temperature played a central role on structural, morphological, optical, and electrochemical properties of MgFe2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8–xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)

    Article  Google Scholar 

  2. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)

    Article  ADS  Google Scholar 

  3. K. Praveena, K. Sadhana, S.R. Murthy, Elastic behaviour of microwave hydrothermally synthesized nanocrystalline Mn1−xZnx ferrites. Mater Res Bull 47, 1096–1103 (2012)

    Article  Google Scholar 

  4. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017)

    Article  ADS  Google Scholar 

  5. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, Magnetic, dielectric and microwave properties of the BaFe12−xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 442, 300–310 (2017)

    Article  ADS  Google Scholar 

  6. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)

    Article  ADS  Google Scholar 

  7. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, M. Salem, Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Int. 43, 5635–5641 (2017)

    Article  Google Scholar 

  8. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)

    Article  Google Scholar 

  9. N. Ma, Y. Yue, W. Hua, Z. Gao, Selective oxidation of styrene over nanosized spinel-type MgxFe3–xO4 complex oxide catalysts. Appl. Catal. A 251, 39–47 (2003)

    Article  Google Scholar 

  10. L. Wang, H. Zhou, Y. Hong, G.M. Kale, Influence of flux treatment on the glass forming ability of Pd–Si binary alloys. J. Univ. Sci. Technol. Beijing 14, 4 (2007)

    Article  Google Scholar 

  11. R. Koferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J. Mater. Sci. 48, 6509–6518 (2013)

    Article  ADS  Google Scholar 

  12. D. Lianfeng, G. Fenghui, W. Limin, J. Songzhe, W. Hua, Hydrothermal synthesis and characterization of MnCo2O4 in the low-temperature hydrothermal process: their magnetism and electrochemical properties. J. Adv. Ceram. 2(3), 266–273 (2013)

    Article  Google Scholar 

  13. K. Manju, T. Smitha, D.S. Nair, E.K. Aswathy, B. Aswathy, T. Arathy, K.K.T. Binu, Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. J. Adv. Ceram. 4(3), 199–205 (2015)

    Article  Google Scholar 

  14. H. Rafidah, H. Jumiah, H. Mansor, P. Suriati, A. Rabaah Syahidah, Morphology and dielectric properties of single sample Ni0.5Zn0.5Fe2O4 nanoparticles prepared via mechanical alloying. J. Adv. Ceram. 3(4), 306–316 (2014)

    Article  Google Scholar 

  15. P.N. Medeiros, Y.F. Gomes, M.R.D. Bomio, I.M.G. Santos, M.R.S. Silva, C.A. Paskocimas, M.S. Li, F.V. Motta, Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method. J. Adv. Ceram. 4(2), 135–141 (2015)

    Article  Google Scholar 

  16. A. Hiromichi, Y. Yuhi, N. Takashi, I. Yoshiteru, M. Tsunehiro, H. Hideyuki, Heat generation properties in AC magnetic field for composite powder material of the Y3Fe5O12–nSiC system prepared by reverse coprecipitation method. J. Adv. Ceram. 5(3), 262–268 (2016)

    Article  Google Scholar 

  17. A. Yogesh, C.M. Chaudhari, P.P. Jagtap, S.T. Bendre, Structural, magnetic and dielectric properties of nano-crystalline Ni-doped BiFeO3 ceramics formulated by self-propagating high-temperature synthesis. J. Adv. Ceram. 2(2), 135–140 (2013)

    Article  Google Scholar 

  18. S. Yulia, S. Sergii, Y. Oleksandr, T. Volodymyr, B. Anatolii, xSrxMnO3 nanoparticles by precipitation-synthesis of ferromagnetic La from diethylene glycol solution and their properties. J. Adv. Ceram. 5(3), 197–203 (2016)

    Article  Google Scholar 

  19. W. Hui, P. Wei, L. Dandan, L. Heping, Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J. Adv. Ceram. 1(1), 2–23 (2012)

    Article  Google Scholar 

  20. H. Xianpei, L. Xinyu, L. Fei, Y. Changlai, Q. Jingjing, X. Jiwen, Z. Changrong, C. Guohua, Microstructures and microwave dielectric properties of(Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions. J. Adv. Ceram. 6(1), 50–58 (2017)

    Article  Google Scholar 

  21. B. Al-Najar, L. Khezami, J.J. Vijaya, O.M. Lemine, M. Bououdina, Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders. Appl. Phys. A 123, 100 (2017)

    Article  ADS  Google Scholar 

  22. F. Basiri, M. Taei, Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Microchim. Acta 184, 155–162 (2017)

    Article  Google Scholar 

  23. E.E. Ateia, E. Takla, A.T. Mohamed, Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites. Appl. Phys. A 123, 631 (2017)

    Article  ADS  Google Scholar 

  24. Y.M. Kang, S.H. Lee, T.C. Kim, J. Jeong, D. Yang, K.S. Han, D.H. Kim, Magnetic property tuning of epitaxial spinel ferrite thin films by strain and composition modulation. Appl. Phys. A 123, 648 (2017)

    Article  ADS  Google Scholar 

  25. N. Aliyan, S.M. Mirkazemi, S.M. Masoudpanah, S. Akbari, The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Appl. Phys. A 123, 446 (2017)

    Article  ADS  Google Scholar 

  26. K. Liang, X.J. Qiao, Z.G. Sun, X.D. Guo, L. Wei, Y. Qu, Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123, 445 (2017)

    Article  ADS  Google Scholar 

  27. A.I. Ayesh, M.A. Haija, A. Shaheen, F. Banat, Spinel ferrite nanoparticles for H2S gas sensor. Appl. Phys. A 123, 682 (2017)

    Article  Google Scholar 

  28. J. Sharma, A. Kumar, S. Kumar, A.K. Srivastava, Investigation of structural and magnetic properties of Tb–Ni-doped bismuth ferrite nanoparticles by auto-combustion method. Appl. Phys. A 123, 522 (2017)

    Article  ADS  Google Scholar 

  29. P. Naderi, A.M. Masoudpanah, S. Alamolhoda, Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method. Appl. Phys. A 123, 702 (2017)

    Article  ADS  Google Scholar 

  30. Y. Yang, F. Wang, J. Shao, K.M. Batoo, D. Huang, Microstructure and magnetic properties of Zr–Mn substituted M-type SrLa hexaferrites. Appl. Phys. A 123, 568 (2017)

    Article  ADS  Google Scholar 

  31. V.A. Ketsko, E.N. Beresnev, M.A. Kopeva, L.V. Elesina, A.I. Baranchikov, A.I. Stognii, A.V. Trukhanov, N.T. Kuznetsov, Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4)x(MgFe2O4)1–x system. Russ. J. Inorg. Chem. 55, 427–429 (2010)

    Article  Google Scholar 

  32. A.V. Trukhanov, A.I. Stognij, S.V. Trukhanov, A.A. Geraskin, V.A. Ketsko, Crystal structure and magnetic properties of nanosized Mg(Fe0.8Ga0.2)2O4-δ films on Si substrates. Crystallogr. Rep. 58, 498–504 (2013)

    Article  ADS  Google Scholar 

  33. S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3−x/2 perovskite manganites. J. Mater. Chem. 13, 347–352 (2003)

    Article  Google Scholar 

  34. S.V. Trukhanov, Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−g (0 ≤ g ≤ 0.25). JETP 100, 95–105 (2005)

    Article  ADS  Google Scholar 

  35. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320, 2774–2779 (2008)

    Article  ADS  Google Scholar 

  36. N. Pailhe, A. Wattiaux, M. Gaudon, A. Demourgues, Correlation between structural features and vis-NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A = Mg, Zn). J Solid State Chem 181, 1040–1047 (2008)

    Article  ADS  Google Scholar 

  37. S.V. Trukhanov, Investigation of stability of ordered manganites. JETP 101, 513–520 (2005)

    Article  ADS  Google Scholar 

  38. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Solids 67, 675–681 (2006)

    Article  ADS  Google Scholar 

  39. S.J. Potashnik, K.C. Ku, S.H. Chun, J.J. Berry, N. Samarth, P. Schiffer, Effects of annealing time on defect-controlled ferromagnetism in Ga1−xMnxAs. Appl. Phys. Lett. 79, 1495 (2001)

    Article  ADS  Google Scholar 

  40. S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, Phase separation and size effects in Pr0.70Ba0.30MnO3+δ perovskite manganites. J. Phys. Condens. Matter 19, 266214–266218 (2007)

    Article  ADS  Google Scholar 

  41. S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Solid State 50, 886–893 (2008)

    Article  ADS  Google Scholar 

  42. L. He, G. Zhang, Y. Dong, Z. Zhang, S. Xue, X. Jiang, Polyetheramide templated synthesis of monodisperse Mn3O4 nanoparticles with controlled size and study of the electrochemical properties. Nano-Micro Lett 6(1), 38–45 (2014)

    Article  Google Scholar 

  43. S. Shivakumar, T.R. Penki, N. Munichandraiah, Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J. Solid State Electrochem. 18, 1057–1066 (2014)

    Article  Google Scholar 

  44. S.W. Oh, H.J. Bang, Y.C. Bae, Y.K. Sun, Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173, 502–509 (2007)

    Article  Google Scholar 

  45. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    Article  ADS  Google Scholar 

  46. A. Manikandan, M. Durka, K. Seevakan, S. Arul Antony, A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1–xFe2O4 (0.0 ≤ x ≤ 0.5) nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015)

    Article  Google Scholar 

  47. S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)

    Article  ADS  Google Scholar 

  48. Y. Shen, Y. Wu, X. Li, Q. Zhao, Y. Hou, One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater Lett 96, 85–88 (2013)

    Article  Google Scholar 

  49. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)

    Article  Google Scholar 

  50. A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F.H. Su, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M.K. Wok, D.L. Phillips, Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)

    Article  ADS  Google Scholar 

  51. S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221–228 (2009)

    Article  ADS  Google Scholar 

  52. M. Jayalakshmi, K. Balasubramanian, Simple capacitors to supercapacitors—an overview. Int. J. Electrochem. Sci. 4, 878–886 (2009)

    Google Scholar 

  53. T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161, 1479 (2006)

    Article  Google Scholar 

  54. D. Narsimulu, B. Nageswara Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Electricaland electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42, 16789–16797 (2016)

    Article  Google Scholar 

  55. R. Kumar, H. Munstedt, Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym. Int. 54, 1180–1186 (2005)

    Article  Google Scholar 

  56. R. Yuvakkumar, S.I. Hong, Nd2O3: novel synthesis and characterization. J. Sol-Gel. Sci. Technol. 73(2), 511–517 (2015)

    Article  Google Scholar 

  57. D.S. Priya, R. Suriyaprabha, R. Yuvakkumar, V. Rajendran, Chitosan-incorporated different nanocomposite HPMC films for food preservation. J. Nanopart. Res. 16(2), 2248 (2014)

    Article  Google Scholar 

  58. S. Sankarrajan, S. Aravindan, R. Yuvakkumar, K. Sakthipandi, V. Rajendran, Anomalies of ultrasonic velocities, attenuation and elastic moduli in Nd1−xSr x MnO3 perovskite manganite materials. J. Magn. Magn. Mater. 321(21), 3611–3620 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC Start-Up Research Grant no. F.30-326/2016 (BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansi Rani, B., Durga, M., Ravi, G. et al. Temperature-dependent physicochemical properties of magnesium ferrites (MgFe2O4). Appl. Phys. A 124, 319 (2018). https://doi.org/10.1007/s00339-018-1749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1749-4

Navigation