Skip to main content
Log in

Circular-to-linear polarization converter based on composite via-coupled patch frequency selective surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present a design of circular-to-linear polarization converter operating in C-band based on a composite frequency selective surface which consists of two types of via-coupled patch modules. The building unit cell is built with four modules, and each one is a truncated patch pair printed on the double-layer substrate and vertically connected by a metal via-hole. A perforated common ground plane is sandwiched between the double layers to support transverse electric and magnetic mode coupling between the front and back patches. The front diagonally truncated patch array responds to the incident right-handed circularly polarized wave, and it is identically converted into general right- and left-handed elliptically or circularly polarized waves with same phase shifts, amplitudes and axial ratio, thus a resultant linear polarized wave is generated in forward transmission mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Kajiwara, IEEE Trans. Veh. Technol. 44, 487 (1995)

    Article  Google Scholar 

  2. S. Gao, Q. Luo, F. Zhu, Circularly polarized antennas. (Hoboken, Wiley, 2013)

    Google Scholar 

  3. Y.F. Lin, Y.K. Wang, H.M. Chen, Z.Z. Yang, IEEE Trans. Antennas Propag. 60, 1221 (2012)

    Article  ADS  Google Scholar 

  4. J. Dyson, IRE Trans. Antennas Propag. 7, 181 (1959)

    Article  ADS  Google Scholar 

  5. X.L. Ma, C. Huang, M.B. Pu, C.G. Hu, Q. Feng, X.G. Luo, Microwave Opt. Technol. Lett. 54, 1770 (2012)

    Article  Google Scholar 

  6. X.L. Ma, C. Huang, W.B. Pan, B. Zhao, J.H. Cui, X.G. Luo, IEEE Trans. Antennas Propag. 62, 2307 (2014)

    Article  ADS  Google Scholar 

  7. C. Zhang, Y.F. Wang, F.G. Zhu, G. Wei, J.Z. Li, C.Y. Wu, S. Gao, H.T. Liu, IEEE Trans. Antennas Propag. 65, 385 (2017)

    Article  ADS  Google Scholar 

  8. J.Y. Yin, X. Wan, J. Ren, T.J. Cui, Sci. Rep. 7, 41505 (2017)

    Article  ADS  Google Scholar 

  9. W.T. Li, S. Gao, Y.M. Cai, Q. Luo, M. Sobhy, G. Wei, J.D. Xu, J.Z. Li, C.Y. Wu, Z.Q. Cheng, IEEE Trans. Antennas Propag. 65, 4470 (2017)

    Article  ADS  Google Scholar 

  10. X.L. Ma, W.B. Pan, C. Huang, M.B. Pu, Y.Q. Wang, B. Zhao, J.H. Cui, C.T. Wang, X.G. Luo, Adv. Opt. Mater. 2, 945 (2014)

    Article  Google Scholar 

  11. J.Y. Chin, M.Z. Lu, T.J. Cui, Appl. Phys. Lett. 93, 251903 (2008)

    Article  ADS  Google Scholar 

  12. M. Euler, V. Fusco, R. Cahill, R. Dickie, IET Microw. Antennas Propag. 4, 1764 (2010)

    Article  Google Scholar 

  13. S. Yan, G.A.E. Vandenbosch, Appl. Phys. Lett. 102, 103503 (2013)

    Article  ADS  Google Scholar 

  14. H.L. Zhu, S.W. Cheung, K.L. Chung, T.I. Yuk, IEEE Trans. Antennas Propag. 61, 4615 (2013)

    Article  ADS  Google Scholar 

  15. J.D. Baena, J.P.D. Risco, A.P. Slobozhanyuk, S.B. Glybovski, P.A. Belov, Phys. Rev. B 92, 245413 (2015)

    Article  ADS  Google Scholar 

  16. Z.C. Li, W.W. Liu, H. Cheng, S.Q. Chen, J.G. Tian, Sci. Rep. 5, 18106 (2015)

    Article  ADS  Google Scholar 

  17. M.S.M. Mollaei, IEEE Antennas Wireless Propag. Lett. 16, 1923 (2017)

    Article  ADS  Google Scholar 

  18. J. Wang, W. Wu, Opt. Express 25, 3805 (2017)

    Article  ADS  Google Scholar 

  19. Z. Yu, S.Z. Xiang, F.Y. Jun, Chin. Phys. B 23, 034101 (2014)

    Article  ADS  Google Scholar 

  20. B.L. Li, Y.J. Li, Z. Wu, F.F. Huo, Y.L. Zhang, C.S. Zhao, Proc. IEEE 103, 1057 (2015)

    Article  Google Scholar 

  21. P. Fei, Z.X. Shen, X. Wen, F. Nian, IEEE Trans. Antennas Propag. 63, 4609 (2015)

    Article  ADS  Google Scholar 

  22. B.Q. Lin, J.L. Wu, X.Y. Da, W. Li, J.J. Ma, Appl. Phys. A 123, 43 (2017)

    Article  ADS  Google Scholar 

  23. J.L. Wu, B.Q. Lin, X.Y. Da, K. Wu, Chin. Phys. B 26, 094201 (2017)

    Article  ADS  Google Scholar 

  24. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G.V. Freymann, S. Linden, M. Wegener, Science 325, 1513 (2009)

    Article  ADS  Google Scholar 

  25. J.K. Ganse, M. Latzel, A. FrÓ§lich, J. Kaschke, M. Thiel, M. Wegener, Appl. Phys. Lett. 100, 101109 (2012)

    Article  ADS  Google Scholar 

  26. R. Ji, S.W. Wang, X.X. Liu, H.J. Guo, W. Lu, ACS Photonics 3, 2368 (2016)

    Article  Google Scholar 

  27. J. Wang, Z.X. Shen, W. Wu, Appl. Phys. Lett. 111, 113503 (2017)

    Article  ADS  Google Scholar 

  28. Z.Y. L.Wu, Y.Z. Yang, R.Z. Cheng, M. Gong, Y. Zhao, J. Zheng, Duan, X.H. Yuan, Appl. Phys. A 116, 643 (2014)

    Article  ADS  Google Scholar 

  29. A.A. Tamijani, K. Sarabandi, G.M. Rebeiz, IEEE Trans. Microwave Theory Tech. 52, 1781 (2004)

    Article  ADS  Google Scholar 

  30. P. Xu, S.Y. Wang, W. Geyi, J. Appl. Phys. 121, 144502 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of National Natural Science Foundation of China (Grant No. 61302048), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20151528), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Yun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, N., Wang, SY. & Geyi, W. Circular-to-linear polarization converter based on composite via-coupled patch frequency selective surfaces. Appl. Phys. A 124, 525 (2018). https://doi.org/10.1007/s00339-018-1951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1951-4

Navigation