Skip to main content
Log in

Attempt to tune the dielectric and optical properties in PVA/ZnO composite using tetra ethylene glycol dimethyl ether for light emitting devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tuning the dielectric constant of the optical materials is of prime importance to optimize their efficiency. Polyvinyl alcohol and tetra ethylene glycol dimethyl (TEGDME) matrix hybrid nanocomposites, featuring zinc oxide embedded in the polymer were fabricated by solution casting technique. TEM images showed that the introduction of tetra ethylene glycol dimethyl ether reduces the dimensions of ZnO particles and displays good distribution of the zinc oxide nanoparticles with very little particle agglomeration, respectively. The presence of tetra ethylene glycol dimethyl ether increases the optical energy gap of the composite from 3.6 to 4 eV. The Intensity and broadening of photoemission increase with increasing the ratio of TEGDME. The IV measurements of the fabricated Cu/(PVZO/TEGDME)/Cu cell under different sun light intensity revealed that the resistivity of the composite decreases with increasing sun light intensity and the presence of tetra ethylene glycol dimethyl ether reduces the resistivity and increases the sensitivity of the composite to sun light. The tunable dielectric constant and optical properties of these polymer composites are demonstrated by increasing the TEGDME contents in the composites, making these composites potentially useful for optimizing optical and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Chen, Z.L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767–2770 (2009)

    Article  Google Scholar 

  2. O. Elkalashy, E. Sheha, R. Khalil, E. Elmoghazy, Evaluate the effect of super P carbon black on tuning the optical and photometric properties of PVA–ZnO composite. J. Nanoelectron. Optoelectron. 13(3), 349–356 (2018)

    Article  Google Scholar 

  3. J. Lee, D. Kim, K. Kim, T. Seong, Reducing forward voltage and enhancing output performance of diodes using metal dot-embedded transparent p-type finger. Phys. Status Solidi (a) 214(8), 1600792 (2017)

    Article  ADS  Google Scholar 

  4. N.X. Sang, T. Chuan, T. Jie, E.A. Fitzgerald, C.S. Jin, Fabrication of p-type Zn O nanorods/n-G a N film heterojunction ultraviolet light-emitting diodes by aqueous solution method. Phys. Status Solidi 1623, 1618–1623 (2013)

    Article  ADS  Google Scholar 

  5. S. Kakarndee, S. Nanan, SDS capped and PVA capped ZnO nanostructures with high photocatalytic performance toward photodegradation of reactive red (RR141) azo dye. J. Environ. Chem. Eng. 6, 74–94 (2018)

    Article  Google Scholar 

  6. M.H. Habibi, B. Karimi, M. Zendehdel, M. Habibi, Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116, 374–380 (2013)

    Article  ADS  Google Scholar 

  7. E. Ghafari, Y. Feng, Y. Liu, I. Ferguson, N. Lu, Investigating process-structure relations of ZnO nanofiber via electrospinning method. Compos. Part B Eng. 116, 40–45 (2017)

    Article  Google Scholar 

  8. H.N. Chandrakala, B. Ramaraj, J.H. Lee, Siddaramaiah, polyvinyl alcohol/carbon coated zinc oxide nanocomposites: electrical, optical, structural and morphological characteristics. J. Alloys Compd. 580, 392–400 (2013)

    Article  Google Scholar 

  9. Y.S. Tamgadge, A.L. Sunatkari, S.S. Talwatkar, V.G. Pahurkar, G.G. Muley, Passive optical limiting studies of nanostructured Cu doped ZnO–PVA composite thin films. Opt. Mater. (Amst) 51, 175–184 (2016)

    Article  ADS  Google Scholar 

  10. M.Y. Soomro, S. Hussain, N. Bano, I. Hussain, O. Nur, M. Willander, Hybrid organic zinc oxide white-light-emitting diodes on disposable paper substrate. Phys. Status Solidi 1605, 1600–1605 (2013)

    Article  ADS  Google Scholar 

  11. X. Xu, Z. Li, J. Wang, B. Lin, W. Ma, Y. Xia, M.R. Andersson, R.A.J. Janssen, E. Wang, High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy 45, 368–379 (2018)

    Article  Google Scholar 

  12. B. Jang, C. Lee, Y.W. Lee, D. Kim, M.A. Uddin, F.S. Kim, B.J. Kim, H.Y. Woo, A high dielectric N-type small molecular acceptor containing oligoethyleneglycol side-chains for organic solar cells. Chin. J. Chem. 36, 199–205 (2018)

    Article  Google Scholar 

  13. A.N. Aleshin, I.P. Shcherbakov, V.N. Petrov, A.N. Titkov, Solution-processed polyfluorene–ZnO nanoparticles ambipolar light-emitting field-effect transistor. Org. Electron. 12, 1285–1292 (2011)

    Article  Google Scholar 

  14. M.B. Upama, N.K. Elumalai, M.A. Mahmud, M. Wright, D. Wang, C. Xu, A. Uddin, Effect of annealing dependent blend morphology and dielectric properties on the performance and stability of non-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 176, 109–118 (2018)

    Article  Google Scholar 

  15. A. Genssle, K. Stephan, Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE-E181. Int. J. Therm. Sci. 39, 30–38 (2000)

    Article  Google Scholar 

  16. H.S. Ryu, H.J. Ahn, K.W. Kim, J.H. Ahn, K.K. Cho, T.H. Nam, J.U. Kim, G.B. Cho, Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 163, 201–206 (2006)

    Article  ADS  Google Scholar 

  17. M. Kartal, A. Alp, H. Akbulut, Electrical conductivity, viscosity and thermal properties of tegdme-based composite electrolytes for lithium-air batteries. Acta Phys. Pol. A 129, 816–818 (2016)

    Article  Google Scholar 

  18. X. Gong, C.Y. Tang, L. Pan, Z. Hao, C.P. Tsui, Characterization of poly(vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Compos. Part B Eng. 60, 144–149 (2014)

    Article  Google Scholar 

  19. B. Karthikeyan, T. Pandiyarajan, R.V. Mangalaraja, Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 485–490 (2016)

    Article  ADS  Google Scholar 

  20. L.C. Liau, Y. Lin, Effects of electric fields on the conduction of polyvinyl alcohol (PVA)/ZnO films by photoluminescence analysis. J. Lumin. 181, 217–222 (2017)

    Article  Google Scholar 

  21. N. Kwietniewski, M. Masłyk, A. Werbowy, A. Taube, S. Gierałtowska, Ł Wachnicki, M. Sochacki, Electrical characterization of ZnO/4H-SiC n-p heterojunction diode. Phys. Status Solidi Appl. Mater. Sci. 213, 1120–1124 (2016)

    Article  ADS  Google Scholar 

  22. M.H. Habibi, M.H. Rahmati, Fabrication and characterization of ZnO@CdS core-shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 13–18 (2014)

    Article  ADS  Google Scholar 

  23. D. Kumar, N. Vijayan, S. Banerjee, Synthesis, characterization, and studies of PVA/co-doped ZnO nanocomposite films. Int. J. Green Nanotechnol. 4(3), 408–416 (2012)

    Article  Google Scholar 

  24. X. Gong, C. Yin, L. Pan, Z. Hao, C. Pong, Composites: part B characterization of poly (vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Compos. Part B 60, 144–149 (2014)

    Article  Google Scholar 

  25. K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Synthesis, characterization and optical properties of hybrid PVA-ZnO nanocomposite: a composition dependent study. Mater. Res. Bull. 51, 438–446 (2014)

    Article  Google Scholar 

  26. A. Akhavan, F. Khoylou, E. Ataeivarjovi, Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiat. Phys. Chem. 138, 49–53 (2017)

    Article  ADS  Google Scholar 

  27. J.J. Mathen, J. Madhavan, A. Thomas, A.J. Edakkara, J. Sebastian, G.P. Joseph, Transparent ZnO–PVA binary composite for UV-A photo detector: optical, electrical and thermal properties followed by laser induced fluorescence. J. Mater. Sci. Mater. Electron. 28, 7190–7203 (2017)

    Article  Google Scholar 

  28. L.A.A Pérez-Maqueda, P.E.E. Sánchez-Jiménez, J.M.M. Criado, Evaluation of the integral methods for the kinetic study of thermally stimulated processes in polymer science. Polymer 46, 2950–2954 (2005)

    Article  Google Scholar 

  29. M.M. Abdel-Kader, M.A.F. Basha, G.H. Ramzy, A.I. Aboud, Thermal and ac electrical properties of N-methylanthranilic acid below room temperature. J. Phys. Chem. Solids 117, 13–20 (2018)

    Article  ADS  Google Scholar 

  30. G. Attia, M.F.H.A. El-kader, Structural, optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 8, 5672–5687 (2013)

    Google Scholar 

  31. L.F. Koao, B.F. Dejene, F.G. Hone, H.C. Swart, S.V. Motloung, T.E. Motaung, V.B. Pawade, Effects of octadecylammine molar concentration on the structure, morphology and optical properties of ZnO nanostructure prepared by homogeneous precipitation method. J. Lumin. 200, 206–215 (2018)

    Article  Google Scholar 

  32. N. Bouropoulos, G.C. Psarras, N. Moustakas, A. Chrissanthopoulos, S. Baskoutas, Optical and dielectric properties of ZnO–PVA nanocomposites. Phys. Status Solidi Appl. Mater. Sci. 205, 2033–2037 (2008)

    Article  ADS  Google Scholar 

  33. M. Saleem, A. Manzoor, M. Zaffar, S.Z. Hussain, M.S. Anwar, Tailoring of ZnO with selected group-II elements for LED materials. Appl. Phys. A Mater. Sci. Process. 122, 1–8 (2016)

    Article  Google Scholar 

  34. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, Investigation of energy band gap in polymer/ZnO nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9804–9811 (2016)

    Article  Google Scholar 

  35. K. Al-ammar, A. Hashim, M. Husaien, Synthesis and study of optical properties of (PMMA-CrCl2) composites. Chem. Mater. Eng. 1, 85–87 (2013)

    Google Scholar 

  36. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12(4), 470–475 (2018)

    Article  Google Scholar 

  37. M.B. Sahana, C. Sudakar, A. Dixit, J.S. Thakur, R. Naik, V.M. Naik, Quantum confinement effects and band gap engineering of SnO2 nanocrystals in a MgO matrix. Acta Mater 60, 1072–1078 (2012)

    Article  Google Scholar 

  38. Kishwar, K.u. Hasan, G. Tzamalis, O. Nur, M. Willander, H. Kwack, D.L.S. Dang, Electro-optical and cathodoluminescence properties of low temperature grown ZnO nanorods/p-GaN white light emitting diodes. Phys. Status Solidi (a) 207(1), 67–72 (2010)

    Article  ADS  Google Scholar 

  39. A.M. Abdelghany, H.M. Zeyada, H.A. ElBatal, R.E. Fetouh, AC conductivity and dielectric behavior of silicophosphate glass doped by Nd2O3. Silicon 9, 347–354 (2017)

    Article  Google Scholar 

  40. L.-J. Tzeng, C.-L. Cheng, Y.-F. Chen, Enhancement of band-edge emission induced by defect transition in the composite of ZnO nanorods and CdSe/ZnS quantum dots. Opt. Lett. 33, 569–571 (2008)

    Article  ADS  Google Scholar 

  41. S.S. Wilson, J.P. Bosco, Y. Tolstova, D.O. Scanlon, G.W. Watson, H.A. Atwater, Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells. Energy Environ. Sci. 7, 3606–3610 (2014)

    Article  Google Scholar 

  42. J.C. Medina, N.S. Portillo-Vélez, M. Bizarro, A. Hernández-Gordillo, S.E. Rodil, Synergistic effect of supported ZnO/Bi2O3 heterojunctions for photocatalysis under visible light. Dyes Pigments 153, 106–116 (2018)

    Article  Google Scholar 

  43. H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys. Pol. A 122, 174–179 (2012)

    Article  Google Scholar 

  44. E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El Mansy, Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik (Stuttg) 123, 1161–1166 (2012)

    Article  ADS  Google Scholar 

  45. H.K. Koduru, L. Marino, F. Scarpelli, A.G. Petrov, Y.G. Marinov, G.B. Hadjichristov, M.T. Iliev, N. Scaramuzza, Structural and dielectric properties of NaIO4—complexed PEO/PVP blended solid polymer electrolytes. Curr. Appl. Phys. 17, 1518–1531 (2017)

    Article  ADS  Google Scholar 

  46. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Composites: part B dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. Part B 47, 314–319 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Benha University and National Institute of standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sheha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkalashy, O., Sheha, E. Attempt to tune the dielectric and optical properties in PVA/ZnO composite using tetra ethylene glycol dimethyl ether for light emitting devices. Appl. Phys. A 124, 549 (2018). https://doi.org/10.1007/s00339-018-1970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1970-1

Navigation