Skip to main content
Log in

Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The authors devoted this paper to study the influence of the substrate temperature upon optical characteristics of iron oxide thin films. Spray pyrolysis technique, SPT, was used to deposit Fe2O3 thin films onto preheated glass substrates (450 °C\(\geq\) Tsub \(\geq\) 250 °C). X-ray diffraction (XRD) revealed that the formed thin-film sample of Tsub < 300 °C has a non-crystalline nature. While it confirmed that deposited samples of Tsub > 300 °C are hematite samples of polycrystalline nature and they have the rhombohedral structure. The optical properties of the present thin films were studied at room temperature in the wavelength range 300–2500 nm. Transmittance and reflectance measurements were utilized to determine and study the optical properties and optical constants. The absorption coefficient, optical density, the optical energy gap, Urbach energy, steepness parameter, and the electron–phonon interaction of films have been evaluated and discussed. The optical energy gap, Eg, was the result of direct and indirect allowed transitions. Eg increased from 2.10 eV to 2.39 eV when the transition is direct and from 1.87 eV to 1.99 eV for indirect transition. While Urbach’s energy decreased from 223 meV to 143 meV and the electron–phonon interaction from 4.089 to 1.778 when the substrate temperature was increased from 250 °C to 450 °C, respectively. The extinction coefficient and refractive index have been also estimated and studied. All optical properties of Fe2O3 thin films discussed in this research work have been strongly dependent upon the substrate temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, J. Alloy. Compd. 521, 178 (2012)

    Google Scholar 

  2. H. Mansour, H. Letifi, R. Bargougui, S. De Almeida-Didry, B. Negulescu, C.A. Lambert, A. Gadri, S. Ammar, Appl. Phys. A 123, 787 (2017)

    ADS  Google Scholar 

  3. A.A. Yadav, J. Mater. Sci.: Mater. Electron. 27, 12876–12883 (2016)

    Google Scholar 

  4. Z. Hubička, Š Kment, J. Olejníček, M. Čada, T. Kubart, M. Brunclíková, P. Kšírová, P. Adámek, Z. Remeš, Thin Solid Films 549, 184 (2013)

    ADS  Google Scholar 

  5. E.L. Miller, D. Paluselli, B. Marsen, R.E. Rocheleau, Thin Solid Films 466, 307 (2004)

    ADS  Google Scholar 

  6. D. A.Cots, P. Cibrev, R. Bonete, Gómez, J. Solid State Electrochem. 22, 149–156 (2018)

    Google Scholar 

  7. L. Kopanja, I. Milosevic, M. Panjan, V. Damnjanovic, M. Tadic, Appl. Surf. Sci. 362, 380 (2016)

    ADS  Google Scholar 

  8. Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Surf. Coat. Technol. 203, 2646 (2009)

    Google Scholar 

  9. B. Ouertani, J. Ouerfelli, M. Saadoun, H. Ezzaouia, B. Bessaïs, Thin Solid Films 516, 8584–8586 (2008)

    ADS  Google Scholar 

  10. N. Shreelekha, S.D. Khatavkar, Sartale, J. Solid State Electrochem. 21, 2555–2566 (2017)

    Google Scholar 

  11. M.A. Gondal, M.N. Sayeed, A. Alarfaj, Chem. Phys. Lett. 445, 325 (2007)

    ADS  Google Scholar 

  12. Y. Huang, Z. Lin, M. Zheng, T. Wang, J. Yang, F. Yuan, X. Lu, L. Liu, D. Sun, J. Power Sour. 307, 649 (2016)

    ADS  Google Scholar 

  13. U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sour. 163, 1003 (2007)

    ADS  Google Scholar 

  14. J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater. 22, E170 (2010)

    Google Scholar 

  15. M. Saleem, S.M.A. Durrani, N. Saheb, M.F. Al-Kuhaili, I.A. Bakhtiari, Appl. Surf. Sci. 320, 653 (2014)

    ADS  Google Scholar 

  16. Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan, Nano Energy 4, 23 (2014)

    Google Scholar 

  17. J. Guo, Q. Liu, C. Wang, M.R. Zachariah, Adv. Funct. Mater. 22, 803 (2012)

    Google Scholar 

  18. J.Y. Shin, D. Samuelis, J. Maier, Adv. Funct. Mater. 21, 3464 (2011)

    Google Scholar 

  19. S. Mira Ristic´, Music´, J. Alloy. Compd. 425, 384 (2006)

    Google Scholar 

  20. A. Alaa, Akl, Appl. Surf. Sci. 256, 7496 (2010)

    ADS  Google Scholar 

  21. R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, J. Alloy. Compd. 550, 395 (2013)

    Google Scholar 

  22. A. Alaa, Akl, Appl. Surf. Sci. 221, 319 (2004)

    ADS  Google Scholar 

  23. C.X. Kronawitter, S.S. Mao, B.R. Antoun, Appl. Phys. Lett. 98, 092108 (2011)

    ADS  Google Scholar 

  24. G. Zotti, G. Schiavon, U. Casellato, J. Electrochem. Soc. 145, 385 (1998)

    Google Scholar 

  25. S. Xue, W. Ousi-Benomar, R.A. Lessard, Thin Solid Films 250, 194 (1994)

    ADS  Google Scholar 

  26. K. Morl, U. Ropke, B. Knappe, J. Lehmann, R. Perthel, H. Schroder, Thin Solid Films 60, 49 (1979)

    ADS  Google Scholar 

  27. N. Ozer, F. Tepehan, Sol. Energy Mater. Sol. Cells 56, 141 (1999)

    Google Scholar 

  28. M. Gartner, M. Crisan, A. Jitianu, R. Scurtu, R. Gavrila, I. Oprea, M. Zaharescu, J. Sol–Gel Sci. Technol. 26, 745 (2003)

    Google Scholar 

  29. S. Mathur, V. Sivakov, H. Shen, S. Barth, C. Cavelius, A. Nilsson, P. Kuhn, Thin Solid Films 502, 88 (2006)

    ADS  Google Scholar 

  30. S.A.J. AL-Dahaan, A.H.O. Al-khayatt, M.K. Salman, J. Kufa Phys. 6, 2 (2014) 16.

    Google Scholar 

  31. A.A. Akl, J. Phys Chem Solids 71, 223–229 (2010)

    ADS  Google Scholar 

  32. A.S. Hassanien, A.A. Akl, Phys. B: 473, 11–19 (2015)

    ADS  Google Scholar 

  33. A.A. Akl, S.A. Mahmoud, S.M. AL-Shomar, A.S. Hassanien, Mater. Sci. Semicond. Process. 74, 183–192 (2018)

    Google Scholar 

  34. A. Alaa, A.S. Akl, Hassanien, Superlattices Microstruct. 85, 67–81 (2015)

    ADS  Google Scholar 

  35. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, J. Cryst. Eng. Comm. 20, 1716–1730 (2018)

    Google Scholar 

  36. A.S. Hassanien, A.A. Akl, Supperlattice Microstuct. 89, 153 (2016)

    ADS  Google Scholar 

  37. S.A. Fayek, M. El-Ocker, A.S. Hassanien, Mater. Chem. Phys. 70, 231 (2001)

    Google Scholar 

  38. A.S. Hassanien, A.A. Akl, J. Alloy. Compd. 648, 280 (2015)

    Google Scholar 

  39. P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloys Compd. 509, 2567 (2011)

    Google Scholar 

  40. T.P. Gujar, V.R. Shinde, C.D. Lokhande, W.Y. Kim, K.D. Jung, O.S. Joo, Electrochem. Commun. 9, 504 (2007)

    Google Scholar 

  41. Y.W. Phuan, M.N. Chong, T. Zhu, S.T. Yong, E.S. Chan, Mater. Res. Bull. 69, 71–77 (2015)

    Google Scholar 

  42. T. Kim, M. Lee, S. Lee, Y. Park, C. Jung, J.-H. Boo, Thin Solid Films 475, 171–177 (2005)

    ADS  Google Scholar 

  43. H. Bazrafshan, Z.A. Tesieh, S. Dabirnia, R.S. Touba, H. Manghabati, B. Nasernejad, Powder Technol. 308, 266–272 (2017)

    Google Scholar 

  44. J. Li, L. Wang, Z. Liu, Y. Wang, S. Wang, J. Alloy. Compd. 728, 944–951 (2017)

    Google Scholar 

  45. A. Alaa Akl, Bull. Catal. Soc. India 10, 50 (2011)

    Google Scholar 

  46. I.N. Shklyarevski, T.I. Komveeva, K.N. Zozula, Opt. Spect. 27, 174 (1969)

    ADS  Google Scholar 

  47. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  48. R. Chikwenze, S. Ezugwu, Chalcogenide Lett. 12, 399 (2015) 8

    Google Scholar 

  49. M.M. El-Nahass, M.H. Ali, I.T. Zedan, J. Non-Cryst. Solids 404, 78 (2014)

    ADS  Google Scholar 

  50. F. Urbach, Phys. Rev. 92, 1324 (1953)

    ADS  Google Scholar 

  51. M. El-Hagary, M.E. Ismail, E.R. Shaaban, A. El-Taher, Rad. Phys. Chem. 81, 1572 (2012)

    ADS  Google Scholar 

  52. A.A. Al-Ghamdi, Vacuum 80, 400 (2006)

    ADS  Google Scholar 

  53. M. Ilyas, M. Zulfequar, M. Husain, J. Mod. Opt. 47, 663 (2000)

    ADS  Google Scholar 

  54. T.T. Nang, M. Okuda, T. Matsushita, S. Yokota, A. Suzuki, Jpn. J. Appl. Phys. 14, 849 (1976)

    ADS  Google Scholar 

  55. A.H. Hammad, A.M. Abdelghany, J. Non-Cryst. Solids 433, 14 (2016)

    ADS  Google Scholar 

  56. M. Altaf, M.A. Chaudhry, Z. Maria, J. Res. Sci. 14, 253 (2003)

    Google Scholar 

  57. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974)

    Google Scholar 

  58. S.M.H. Qaid, M.S. Al Sobaie, M.A. Majeed Khan, I.M. Bedja, F.H. Alharbi, M.K. Nazeeruddin, A.S. Aldwayyan, Mater. Lett. 164, 498 (2016)

    Google Scholar 

  59. A. Alaa, Akl, Appl. Surf. Sci. 233, 307 (2004)

    ADS  Google Scholar 

  60. A.N.C. Agbogu, M.P. Orji, A.B.C. Ekwealor, Optik 127, 9865–9870 (2016)

    ADS  Google Scholar 

  61. R.D. Suryavanshi, K.Y. Rajpure, J. Photochem. Photobiol. A 357, 72–80 (2018)

    Google Scholar 

  62. R. Parmar, R.S. Kundu, R. Punia, P. Aghamkar, N. Kishore, Phys. B 450, 39 (2014)

    ADS  Google Scholar 

  63. J. Melsheimer, D. Ziegler, Thin Solid Films 129, 35 (1985)

    ADS  Google Scholar 

  64. T. Skettrup, Phys. Rev. B 18, 2622 (1978)

    ADS  Google Scholar 

  65. L.L. Kazmersky (ed.), Polycrystalline and amorphous thin films and devices (Academic, New York, 1980), p. 135

    Google Scholar 

  66. J. Ozdanova, H. Ticha, L. Tichy, J. Non-Cryst. Solids 353, 2799 (2007)

    ADS  Google Scholar 

  67. C. Hamaguchi (2017) Electron–phonon interaction and electron transport. Basic semiconductor physics. Graduate Texts in Physics. Springer, Cham

    Google Scholar 

  68. S.A. Mahmoud, A.A. Akl, S.M. Al-Shomar, Phys. B 404, 2151 (2009)

    ADS  Google Scholar 

  69. H.E. Atyia, N.A. Hegab, Phys. B 454, 189 (2014)

    ADS  Google Scholar 

  70. O.S. Heavens, Optical properties of thin solid films (Dover, New York, 1965)

    Google Scholar 

  71. P. Hervab, L.K.J. Van damme, Infrared Phys. Technol. 35(4), 609–615 (1994)

    ADS  Google Scholar 

  72. N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 50, 21–29 (2007)

    ADS  Google Scholar 

  73. A.S. Hassanien, J. Alloy. Compd. 671, 566–578 (2016)

    Google Scholar 

  74. F.J. Kahn, P.S. Pershan, J.P. Remeika, Phys. Rev. 186, 891 (1969)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Saeed Hassanien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.S., Akl, A.A. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A 124, 752 (2018). https://doi.org/10.1007/s00339-018-2180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2180-6

Navigation