Skip to main content
Log in

Investigation of physical properties of magnetoelectric LaFeO3–ErMnO3 lead-free nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetoelectric coupling has been investigated in lead-free nanocomposites of LaFeO3x–ErMnO3 (1−x) (x = 0.2 and 0.3) prepared by pyrophoric reaction process having piezomagnetic phase of LaFeO3 and piezoelectric phase of ErMnO3, while this nanocomposite reveals the signature of product property, i.e., Magnetoelectric coupling and magnetocapacitance effect (~ 50%) at room temperature attribute the enhancement of space charge polarisation of nanoparticles. Coexistence of both phases in nanocomposites is confirmed by X-ray diffraction technique. Electrical susceptibility corresponds to the domain wall motion due to electrostriction property. Temperature-dependent impedance analysis provides the evidence of space charge accumulation in nanocomposites exhibiting negative temperature coefficient resistance effect of the sample. The estimated activation energy from the Arrhenius fit suggests the hopping of carriers between La2+ and La3+ and Fe2+ and Fe3+ ions in the materials. The importance of the present study is the developing urge to know the details of magnetoelectric coupling and transport properties of a system for its technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Ade, T. Karthik, J. Kolte, V. Sambasiva, A.R. Kulkarni, N. Venkataramani, Scr. Mater. 150, 125–129 (2018)

    Article  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  3. J.F. Scott, Nat. Mater. 6, 256–257 (2007)

    Article  ADS  Google Scholar 

  4. M.A. Subramanian, T. He, J. Chen, N.S. Rogado, T.G. Calvarese, A.W. Sleight, Adv. Mater. 18, 1737 (2006)

    Article  Google Scholar 

  5. D. Khomskii, Physics. 2, 20 (2009)

    Article  Google Scholar 

  6. W. Prellier, M.P. Singh, P. Murugavel, J. Phys. Condens. Mat. 17, R803 (2005)

    Article  ADS  Google Scholar 

  7. K.H. Cho, M.I. Bichurin, V.M. Petrov, A. Bhalla, S. Priya, Ferroelectrics 473, 110–128 (2014)

    Article  Google Scholar 

  8. T. Lottermoser, M. Fiebig, Phys. Rev. B 70, 220407-1–220407-4 (2004)

    Article  ADS  Google Scholar 

  9. T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004)

    Article  ADS  Google Scholar 

  10. Th Lonkai, D.G. Tomuta, U. Amann, J. Ihringer, R.W.A. Hendrix, D.M. Többens, J.A. Mydosh, Phys. Rev. B 69, 134108 (2004)

    Article  ADS  Google Scholar 

  11. A. McDannald, L. Ye, C. Cantoni, G. Sreenivasulu, G. Srinivasan, B.D. Huey, M. Jain, Nanoscale 9, 3246–3251 (2017)

    Article  Google Scholar 

  12. J.P. Praveen, V.R. Monaji, E. Chandrakala, S. Indla, S.D. Kumar, V. Subramanian, D. Das, J. Alloys Compd. 750, 392–400 (2018)

    Article  Google Scholar 

  13. L. Yan, Z. Xing, Z. Wang, T. Wang, G. Lei, J. Li, D. Viehland, Appl. Phys. Lett. 94, 192902 (2009)

    Article  ADS  Google Scholar 

  14. H. Luo, H. Yang, S.A. Baily, O. Ugurlu, M. Jain, M.E. Hawley, T.M. McCleskey, A.K. Burrell, E. Bauer, L. Civale, T.G. Holesinger, Q. Jia, J. Am. Chem. Soc. 129, 14132–14133 (2007)

    Article  Google Scholar 

  15. A. Mayeen, M.S. Kala, M.S. Jayalakshmy, S. Thomas, D. Rouxel, J. Philip, R.N. Bhowmik, K. Nandakumar, Dalton Trans. 47, 2039–2051 (2018)

    Article  Google Scholar 

  16. M.D. Chermahini, M.M. Shahraki, M. Kazazi, Mater. Lett. 233, 188–190 (2018)

    Article  Google Scholar 

  17. M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S.C. Yang, D. Maurya, V. Bedekar, S. Priya, Materials 4, 651–702 (2011)

    Article  ADS  Google Scholar 

  18. M.N. Islam, W. Araki, Y. Arai, J. Eur. Ceram. Soc. 37, 1665–1671 (2017)

    Article  Google Scholar 

  19. D. Deb, R. Debnath, S.K. Mandal, A. Nath, P. Dey, J. Alloys Compd. 776, 71–82 (2019)

    Article  Google Scholar 

  20. A. Pathak, S. Mohapatra, S. Mohapatra, S.K. Biswas, D. Dhak, N.K. Pramanik, A. Tarafdar, P. Pramanik, Am. Ceram. Soc. Bull. 83, 9301 (2004)

    Google Scholar 

  21. Natl, Bur. Stand (U. S) Monogr. 25, 216 (1963)

    Google Scholar 

  22. M. Marezio, P.D. Dernier, Mater. Res. Bull. 6, 23–30 (1971)

    Article  Google Scholar 

  23. S.K. Mandal, R. Debnath, P. Dey, A. Nath, Mater. Res. Express 4, 115014 (2017)

    Article  ADS  Google Scholar 

  24. J. Dec, W. Kleemann, M. Itoh, Phys. Rev. B 71, 144113 (2005)

    Article  ADS  Google Scholar 

  25. J. Dec, W. Kleemann, M. Itoh, Appl. Phys. Lett. 85, 22 (2004)

    Article  Google Scholar 

  26. J. Yanmin, L. Haosu, O.S. Wing, W. Yaojin, C.H. LW, Sci. Bull. 53, 2130–2135 (2008)

    Google Scholar 

  27. M. Rawat, K.L. Yadav, Smart Mater. Struct. 23, 10 (2014) 085032

    Article  Google Scholar 

  28. P. Dutta, P. Dey, T.K. Nath, J. Appl. Phys. 102, 073906 (2007)

    Article  ADS  Google Scholar 

  29. P. Kumar, K. Rubi, R. Mahendiran, AIP Adv. 6, 055913 (2016)

    Article  ADS  Google Scholar 

  30. R. Debnath, P. Dey, S. Singh, J.N. Roy, S.K. Mandal, T.K. Nath, J. Appl. Phys. 118, 044104 (2015)

    Article  ADS  Google Scholar 

  31. J. Rout, B.N. Parida, P.R. Das, R.N.P. Choudhary, J. Electron. Mater. 43, 3 (2014)

    Article  Google Scholar 

  32. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Article  ADS  Google Scholar 

  33. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 26, 2343–2356 (2015)

    Google Scholar 

  34. K. Funke, Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  35. A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999)

    Article  ADS  Google Scholar 

  36. I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, J. Appl. Phys. 112, 074105 (2012)

    Article  ADS  Google Scholar 

  37. R.A. Eichel, J. Electroceram. 19, 9–21 (2007)

    Article  Google Scholar 

  38. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, J. Adv. Cerm. 2(3)), 291–300 (2013)

    Article  Google Scholar 

  39. S. Sen, S.K. Mishra, S.S. Palit, S.K. Das, A. Tarafdar, J. Alloys Compd. 453, 395–400 (2008)

    Article  Google Scholar 

  40. V. Prakash, A. Dutta, S.N. Choudhary, T.P. Sinha, Mater. Sci. Eng. B. 142, 98–105 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge to the Central Research Facility, NIT Agartala, DST Project (no. SR/FTP/PS-019/2012), India, for providing us some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1141 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, D., Mandal, S.K. & Nath, A. Investigation of physical properties of magnetoelectric LaFeO3–ErMnO3 lead-free nanocomposites. Appl. Phys. A 124, 872 (2018). https://doi.org/10.1007/s00339-018-2287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2287-9

Navigation