Skip to main content
Log in

A novel gate engineered L-shaped dopingless tunnel field-effect transistor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, dopingless tunnel FET (DL-TFET) has emerged and gathered much attention, for it avoids the physical doping process and provides superior immunity against random dopant fluctuation. Nevertheless, it also suffers from low drive current and severe ambipolar effect. In order to overcome these problems, an L-shaped DL-TFET (LDL-TFET) with the gate engineering technique is proposed in this paper. In this device, the space between the source and the gate electrodes can be further optimized to reduce the tunneling distance, and hence boost the drive current. Also, without much fabrication difficulties, hetero-gate-dielectric (HGD) and tunneling gate (TG) structures can be utilized in the LDL-TFET. Benefiting from the modification of the band energy by HGD and TG, the source-channel tunneling distance is further reduced, while the drain-channel tunneling distance is enlarged. TCAD simulation results show that in comparison with planar DL-TFET (PDL-TFET), LDL-TFET offers better performance in terms of on-current, switch ratio, subthreshold slope, ambipolar current and RF parameters. It indicates that the LDL-TFET is a promising device for low-power RF and digital logic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Woo Young, P. Byung-Gook, L. Jong Duk, L. Tsu-Jae King, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007). https://doi.org/10.1109/led.2007.901273

    Article  ADS  Google Scholar 

  2. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010). https://doi.org/10.1109/Jproc.2010.2070470

    Article  Google Scholar 

  3. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–37 (2011). https://doi.org/10.1038/nature10679

    Article  ADS  Google Scholar 

  4. W.Y. Choi, W. Lee, Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010). https://doi.org/10.1109/Ted.2010.2052167

    Article  ADS  Google Scholar 

  5. Z. Yan, C. Li, J. Guo, Y. Zhuang, A GaAs Sb /in Ga0.47As heterojunction Z-gate TFET with hetero-gate-dielectric. Superlattices Microstruct. 129, 282–293 (2019). https://doi.org/10.1016/j.spmi.2019.04.006

    Article  ADS  Google Scholar 

  6. M. Aslam, D. Sharma, S. Yadav, D. Soni, V. Bajaj, A new design approach for enhancement of DC/RF characteristics with improved ambipolar conduction of charge plasma TFET: proposal, and optimization. Appl. Phys. A 124(4), 342 (2018). https://doi.org/10.1007/s00339-018-1753-8

    Article  ADS  Google Scholar 

  7. H. Lu, A. Seabaugh, Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014). https://doi.org/10.1109/jeds.2014.2326622

    Article  Google Scholar 

  8. B.R. Raad, D. Sharma, P. Kondekar, K. Nigam, D.S. Yadav, Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016). https://doi.org/10.1109/Ted.2016.2600621

    Article  ADS  Google Scholar 

  9. A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani, Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETS. IEEE Electron Device Lett. 33(3), 336–338 (2012). https://doi.org/10.1109/led.2011.2181153

    Article  ADS  Google Scholar 

  10. C. Chen, Q. Huang, J. Zhu, Y. Zhao, L. Guo, R. Huang, New understanding of random telegraph noise amplitude in tunnel FETS. IEEE Trans. Electron Devices 64(8), 3324–3330 (2017). https://doi.org/10.1109/ted.2017.2712714

    Article  ADS  Google Scholar 

  11. N. Paras, S.S. Chauhan, Temperature sensitivity analysis of vertical tunneling based dual metal gate TFET on analog/RF foms. Appl. Phys. A 125(5), 316 (2019). https://doi.org/10.1007/s00339-019-2621-x

    Article  ADS  Google Scholar 

  12. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013). https://doi.org/10.1109/Ted.2013.2276888

    Article  ADS  Google Scholar 

  13. C. Sahu, J. Singh, Potential benefits and sensitivity analysis of dopingless transistor for low power applications. IEEE Trans. Electron Devices 62(3), 729–735 (2015). https://doi.org/10.1109/Ted.2015.2389900

    Article  ADS  Google Scholar 

  14. A. Lahgere, C. Sahu, J. Singh, PVT-aware design of dopingless dynamically configurable tunnel FET. IEEE Trans. Electron Devices 62(8), 2404–2409 (2015). https://doi.org/10.1109/ted.2015.2446615

    Article  ADS  Google Scholar 

  15. S. Tirkey, D.S. Yadav, D. Sharma, Controlling ambipolar current of dopingless tunnel field-effect transistor. Appl. Phys. A 124(12), 809 (2018). https://doi.org/10.1007/s00339-018-2237-6

    Article  ADS  Google Scholar 

  16. R. Jhaveri, V. Nagavarapu, J.C.S. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011). https://doi.org/10.1109/ted.2010.2089525

    Article  ADS  Google Scholar 

  17. X. Duan, J. Zhang, J. Chen, T. Zhang, J. Zhu, Z. Lin, Y. Hao, High performance drain engineered InGaN heterostructure tunnel field effect transistor. Micromachines 10(1), 75 (2019). https://doi.org/10.3390/mi10010075

    Article  Google Scholar 

  18. D. Soni, D. Sharma, M. Aslam, S. Yadav, A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric. Appl. Phys. A 124(4), 306 (2018). https://doi.org/10.1007/s00339-018-1670-x

    Article  ADS  Google Scholar 

  19. X.L. Duan, J.C. Zhang, S.L. Wang, Y. Li, S.R. Xu, Y. Hao, A high-performance gate engineered InGaN dopingless tunnel FET. IEEE Trans. Electron Devices 65(3), 1223–1229 (2018). https://doi.org/10.1109/Ted.2018.2796848

    Article  ADS  Google Scholar 

  20. S. Shekhar, J. Madan, R. Chaujar, Source/gate material-engineered double gate TFET for improved RF and linearity performance: a numerical simulation. Appl. Phys. A 124(11), 739 (2018). https://doi.org/10.1007/s00339-018-2158-4

    Article  ADS  Google Scholar 

  21. B.R. Raad, S. Tirkey, D. Sharma, P. Kondekar, A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017). https://doi.org/10.1109/Ted.2017.2672640

    Article  ADS  Google Scholar 

  22. B.V. Chandan, K. Nigam, D. Sharma, V.A. Tikkiwal, A novel methodology to suppress ambipolarity and improve the electronic characteristics of polarity-based electrically doped tunnel FET. Appl. Phys. A 125(2), 81 (2019). https://doi.org/10.1007/s00339-019-2378-2

    Article  ADS  Google Scholar 

  23. M.A. Raushan, N. Alam, M.J. Siddiqui, Dopingless tunnel field-effect transistor with oversized back gate: proposal and investigation. IEEE Trans. Electron Devices 65(10), 4701–4708 (2018). https://doi.org/10.1109/ted.2018.2861943

    Article  ADS  Google Scholar 

  24. M.R. Uddin Shaikh, S.A. Loan, Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans. Electron Devices 66(4), 1628–1634 (2019). https://doi.org/10.1109/ted.2019.2896674

    Article  ADS  Google Scholar 

  25. S.W. Kim, W.Y. Choi, M.C. Sun, B.G. Park, Investigation on the corner effect of L-shaped tunneling field-effect transistors and their fabrication method. J. Nanosci. Nanotechnol. 13(9), 6376–6381 (2013). https://doi.org/10.1166/jnn.2013.7609

    Article  Google Scholar 

  26. D.R. Lide, CRC Handbook of Chemistry and Physics, 89th edn. (Taylor and Francis, New York, 2008)

    Google Scholar 

  27. P. Ranade, H. Takeuchi, T.J. King, C. Hu, Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid-State Lett. 4(11), G85–G87 (2001). https://doi.org/10.1149/1.1402497

    Article  Google Scholar 

  28. J. Madan, R. Pandey, R. Sharma, R. Chaujar, Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET. Appl. Phys. A 125(9), 600 (2019). https://doi.org/10.1007/s00339-019-2900-6

    Article  ADS  Google Scholar 

  29. S.W. Kim, J.H. Kim, T.J.K. Liu, W.Y. Choi, B.G. Park, Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans. Electron Devices 63(4), 1774–1778 (2016). https://doi.org/10.1109/Ted.2015.2472496

    Article  ADS  Google Scholar 

  30. C. Li, Z.R. Yan, Y.Q. Zhuang, X.L. Zhao, J.M. Guo, Ge/Si heterojunction L-shape tunnel field-effect transistors with hetero-gate-dielectric. Chin. Phys. B 27(7), 078502 (2018). https://doi.org/10.1088/1674-1056/27/7/078502

    Article  ADS  Google Scholar 

  31. B. Rajasekharan, R.J.E. Hueting, C. Salm, T. van Hemert, R.A.M. Wolters, J. Schmitz, Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010). https://doi.org/10.1109/led.2010.2045731

    Article  ADS  Google Scholar 

  32. S.I.S. Clara, ATLAS Device Simulation Software (Silvaco, Santa Clara, 2013)

    Google Scholar 

  33. N. Kumar, A. Raman, Performance assessment of the charge-plasma-based cylindrical GAA vertical nanowire TFET with impact of interface trap charges. IEEE Trans. Electron Devices 66(10), 4453–4460 (2019). https://doi.org/10.1109/ted.2019.2935342

    Article  ADS  Google Scholar 

  34. P.M. Solomon, J. Jopling, D.J. Frank, C. D’Emic, O. Dokumaci, P. Ronsheim, W. Haensch, Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004). https://doi.org/10.1063/1.1699487

    Article  ADS  Google Scholar 

  35. C. Li, X.L. Zhao, Y.Q. Zhuang, Z.R. Yan, J.M. Guo, R. Han, Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and analog/RF performance enhancement. Superlattices Microstruct. 115, 154–167 (2018). https://doi.org/10.1016/j.spmi.2018.01.025

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 61574109 and 61204092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Guo, J., Jiang, H. et al. A novel gate engineered L-shaped dopingless tunnel field-effect transistor. Appl. Phys. A 126, 412 (2020). https://doi.org/10.1007/s00339-020-03554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03554-x

Keywords

Navigation