Skip to main content
Log in

Effect of ambiance on the coal characterization using laser-induced breakdown spectroscopy (LIBS)

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of surrounding gases, such as He, N2, atmospheric air, and Ar, and gas flow rate on the laser-induced breakdown spectroscopy (LIBS) characterization of coals in free space is studied. The atomic and molecular carbon (C2 and CN) emission intensities are observed to be higher in Ar and N2 ambiance. Quantitative analysis of carbon and ash content in different coal samples is carried out using the carbon bound atomic and molecular emission signals and the ash forming elements (Si, Fe, Mg, Al, Ca, Na, and K) signals. The sum of the LIBS emission of the all and major ash forming elements increased linearly with an increase in the ash content. Similarly, the ratio between the carbon signals (C I, CN, and C2) and the sum of major ash forming elements (Si, Al, Fe, and Ca) also showed a linear increase with the increase in carbon content in coal samples. The linear coefficient of regression, R2, was estimated to be 0.67, 0.58, and 0.85, and the root mean square of calibration samples was estimated to be 5.71, 5.82, and 5.57 wt% using the partial least square regression (PLSR) method for air (no flow), N2, and Ar atmosphere, respectively. The precision and accuracy of the carbon measurement in coal samples by the LIBS technique using the PLSR method were higher in the presence of Ar than air or N2 atmosphere due to the plasma shielding effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Erickson, S. Allan, D. McCollor, J. Hurley, S. Srinivasachar, S. Kang, J. Baker, M. Morgan, S. Johnson, R. Borio, Fuel Process Technol. 44, 155 (1995)

    Article  Google Scholar 

  2. M. Khandelwal, T. Singh, Fuel 89, 1101 (2010)

    Article  Google Scholar 

  3. J. Parus, J. Kierzek, B. Małżewska-Bućko, X-Ray Spectrom. 29, 192 (2000)

    Article  ADS  Google Scholar 

  4. L. Dep, M. Belbot, G. Vourvopoulos, S. Sudar, J. Radioanal. Nucl. Chem. 234, 107 (1998)

    Article  Google Scholar 

  5. D. Rusak, B. Castle, B. Smith, J. Winefordner, Crit. Rev. Anal. Chem. 27, 257 (1997)

    Article  Google Scholar 

  6. C.E. Romero, R.D. Saro, J. Craparo, A. Weisberg, R. Moreno, Z. Yao, Energy Fuel 24, 510 (2009)

    Article  Google Scholar 

  7. W. Li, J. Lu, M. Dong, S. Lu, J. Yu, S. Li, J. Huang, J. Liu, Energy Fuel 32, 24 (2017)

    Article  Google Scholar 

  8. W. Yin, B. Zhang, S. Jia, J. Test Measurement Technol. 4, 356 (2011)

    Google Scholar 

  9. D. Body, B.L. Chadwick, Rev. Sci. Instrum. 72, 1625 (2001)

    Article  ADS  Google Scholar 

  10. S. Balakrishnan, V.M. Reddy, A. Mehta, N. Vasa, R. Nagarajan, Appl. Phys. A 122, 399 (2016)

    Article  ADS  Google Scholar 

  11. Q. Ma, P.J. Dagdigian, Anal. Bioanal. Chem. 400, 3193 (2011)

    Article  Google Scholar 

  12. M. Dong, X. Mao, J.J. Gonzalez, J. Lu, R.E. Russo, J. Anal. At. Spectrom. 27, 2066 (2012)

    Article  Google Scholar 

  13. X. Li, Z. Wang, Y. Fu, Z. Li, J. Liu, W. Ni, Appl. Spectrosc. 68, 955 (2014)

    Article  ADS  Google Scholar 

  14. S. Yao, J. Lu, M. Dong, K. Chen, J. Li, J. Li, Appl. Spectrosc. 65, 1197 (2011)

    Article  ADS  Google Scholar 

  15. N. Farid, S. Bashir, K. Mahmood, Phys. Scr. 85, 015702 (2011)

    Article  ADS  Google Scholar 

  16. L. Fornarini, V. Spizzichino, F. Colao, R. Fantoni, V. Lazic, Anal. Bioanal. Chem. 385, 272 (2006)

    Article  Google Scholar 

  17. P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, L. Wöste, J. Anal. At. Spectrom. 19, 437 (2004)

    Article  Google Scholar 

  18. Z. Wang, T.-B. Yuan, S.-L. Lui, Z.-Y. Hou, X.-W. Li, Z. Li, W.-D. Ni, Front. Phys. 7, 708 (2012)

    Article  ADS  Google Scholar 

  19. NIST LIBS database, https://physics.nist.gov/PhysRefData/ASD/LIBS/libs. Accessed 1 Oct 2019

  20. S. Harilal, C. Bindhu, R.C. Issac, V. Nampoori, C. Vallabhan, J. Appl. Phys. 82, 2140 (1997)

    Article  ADS  Google Scholar 

  21. J.K. Antony, G.S. Jatana, N.J. Vasa, V.S. Raja, A. Laxmiprasad, Appl. Phys. A 101, 161 (2010)

    Article  ADS  Google Scholar 

  22. A. Shaltout, N. Mostafa, M. Abdel-Aal, H. Shaban, Eur. Phys. J. Appl. Phys. 50, 1 (2010)

    Article  Google Scholar 

  23. H.R. Griem, Principles of Plasma Spectroscopy, vol. vol 2 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  24. M. Pishdast, A.E. Majd, M.K. Tehrani, Laser Part Beams 34, 493 (2016)

    Article  ADS  Google Scholar 

  25. S. Harilal, C. Bindhu, V. Nampoori, C. Vallabhan, Appl. Phys. Lett. 72, 167 (1998)

    Article  ADS  Google Scholar 

  26. F. Rezaei, S.H. Tavassoli, Spectrochim. Acta B 78, 29 (2012)

    Article  ADS  Google Scholar 

  27. S. Chakravarty, A. Mohanty, A. Banerjee, R. Tripathy, G. Mandal, M.R. Basariya, M. Sharma, Fuel 150, 96 (2015)

    Article  Google Scholar 

  28. W.J. Song, L.H. Tang, X.D. Zhu, Y.Q. Wu, Z.B. Zhu, S. Koyama, Energy Fuel 24, 182 (2009)

    Article  Google Scholar 

  29. M. Gaft, E. Dvir, H. Modiano, U. Schone, Spectrochim. Acta B 63, 1177 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Grant-in-Aid from the UAY project (ASE1617134MUAYTMMU) with Bharat Heavy Electricals Limited (BHEL), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh J. Vasa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajavelu, H., Vasa, N.J. & Seshadri, S. Effect of ambiance on the coal characterization using laser-induced breakdown spectroscopy (LIBS). Appl. Phys. A 126, 395 (2020). https://doi.org/10.1007/s00339-020-03558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03558-7

Keywords

Navigation