Skip to main content
Log in

Fabrication of binary (ZnO)x(TiO2)1−x nanoparticles via thermal treatment route and evaluating the impact of various molar concentrations on the structure and optical behaviors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Numerous studies have explored the behaviors of ZnO–TiO2 nanoparticles resulting through various routes of fabrication. To date, the utilization of thermal treatment method to convey ZnO–TiO2 nanoparticles has never been considered. In the present study, binary (ZnO)x(TiO2)1−x NPs were effectively blended by using thermal treatment technique. Zinc nitrate and titanium(IV) propoxide with polyvinylpyrrolidone, PVP, were utilized to set up the samples. Energy-dispersive X-ray (EDX) spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD) spectroscopy, ultraviolet–visible (UV–Vis) spectrophotometer transmission electron microscopy (TEM) and photoluminescence spectroscopy were utilized to examine the impact of changing the molar proportion to the structure and optical features of (ZnO)x(TiO2)1−x NPs. The XRD spectra revealed that after calcination, the amorphous sample had transformed into crystalline nanoparticles. The prepared (ZnO)x(TiO2)1−x NPs average diameter was around 25.922–28.531 nm according to TEM analysis. The analyzation of UV–Vis spectroscopy determined the optical measurements parameters including the energy gap and Urbach energy of binary (ZnO)x(TiO2)1−x NPs. The optical energy gap varied in the range of 3.2496–3.2863 eV as the molar ratio increases from x = 0.24 to x = 0.72. The enhancement within the nanoparticles optical properties suggests a good potential for photocatalysis application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)

    Article  Google Scholar 

  2. H.S. Bae, M.H. Yoon, J.H. Kim, S. Im, Photodetecting properties of ZnO-based thin-film transistors. Appl. Phys. Lett. 83(25), 5313–5315 (2003)

    Article  ADS  Google Scholar 

  3. H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mater. 141(3), 645–652 (2007)

    Article  Google Scholar 

  4. N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008)

    Article  Google Scholar 

  5. Hanley, C. L. Differential Cellular Responses to Metal Oxide Based Nanoparticles and Potential Biomedical Applications, Master Thesis 2009, Boise State University

  6. L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, Z.L. Wang, Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10(2), 2636–2643 (2016)

    Article  Google Scholar 

  7. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, G.Q.M. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 20(5), 831–843 (2010)

    Article  ADS  Google Scholar 

  8. J. Liqiang, X. Baifu, Y. Fulong, W. Baiqi, S. Keying, C. Weimin, F. Honggang, Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Appl. Catal. A 275(1–2), 49–54 (2004)

    Article  Google Scholar 

  9. A.M. Braun, Progress in the Applications of Photochemical Conversion and Storage. In Photochemical Conversion and Storage of Solar Energy (Springer, Dordrecht, 1991), pp. 551–560

    Book  Google Scholar 

  10. Y. Yu, X. Yin, A. Kvit, X. Wang, Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 14(5), 2528–2535 (2014)

    Article  ADS  Google Scholar 

  11. E.J. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495(7440), 215 (2013)

    Article  ADS  Google Scholar 

  12. R.B. Pedhekar, F.C. Raghuwanshi, V.D. Kapse, G.H. Raisoni, Low temperature H2S gas sensor based on Fe2O3 modified ZnO-TiO2 thick film. Int. J. Mater. Sci. Eng 3, 219 (2015)

    Google Scholar 

  13. K. Kobwittaya, Y. Oishi, T. Torikai, M. Yada, T. Watari, Upconversion luminescence of ZnO-TiO2: Ho3+/Yb3+ phosphor powder. Mater. Sci. Forum 922, 32–39 (2018)

    Article  Google Scholar 

  14. V. Lachom, P. Poolcharuansin, P. Laokul, Preparation, characterizations and photocatalytic activity of a ZnO/TiO2 nanocomposite. Mater. Res. Express 4(3), 035006 (2017)

    Article  ADS  Google Scholar 

  15. N. Khalilzadeh, E.B. Saion, H. Mirabolghasemi, A.H.B. Shaari, M.B. Hashim, M.B.H. Ahmad, A. Dehzangi, Single step thermal treatment synthesis and characterization of lithium tetraborate nanophosphor. J. Mater. Res. Technol. 5(1), 37–44 (2016)

    Article  Google Scholar 

  16. A. Salem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, S. Radiman, Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization. Results Phys. 7, 1175–1180 (2017)

    Article  ADS  Google Scholar 

  17. M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, M.A. Kamarudeen, Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 6, 1024–1030 (2016)

    Article  ADS  Google Scholar 

  18. A. Salem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, C.A.C. Abdullah, S. Radiman, Synthesis and characterization of CdSe nanoparticles via thermal treatment technique. Results Phys. 7, 1556–1562 (2017)

    Article  ADS  Google Scholar 

  19. L. Gharibshahi, E. Saion, E. Gharibshahi, A. Shaari, K. Matori, Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10(4), 402 (2017)

    Article  ADS  Google Scholar 

  20. L.B. Zakiyah, E. Saion, N.M. Al-Hada, E. Gharibshahi, A. Salem, N. Soltani, S. Gene, Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater. Sci. Semicond. Process. 40, 564–569 (2015)

    Article  Google Scholar 

  21. M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)

    Article  ADS  Google Scholar 

  22. D.K. Lim, M.H. Cui, J.M. Nam, Highly stable, amphiphilic DNA-encoded nanoparticle conjugates for DNA encoding/decoding applications. J. Mater. Chem. 21(26), 9467–9470 (2011)

    Article  Google Scholar 

  23. P.D. Hong, H.T. Huang, Effect of co-solvent complex on preferential adsorption phenomenon in polyvinyl alcohol ternary solutions. Polymer 41(16), 6195–6204 (2000)

    Article  Google Scholar 

  24. M. Pattanaik, S.K. Bhaumik, Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces. Mater. Lett. 44(6), 352–360 (2000)

    Article  Google Scholar 

  25. C.H. Yeo, S.H.S. Zein, A.L. Ahmad, D.S. McPhail, Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells. Braz. J. Chem. Eng. 29(1), 147–158 (2012)

    Article  Google Scholar 

  26. Q. Luo, X. Yang, X. Zhao, D. Wang, R. Yin, X. Li, J. An, Facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl. Catal. B 204, 304–315 (2017)

    Article  Google Scholar 

  27. V.K. Jayaraman, A.M. Álvarez, M.D.L.L.O. Amador, A simple and cost-effective zinc oxide thin film sensor for propane gas detection. Mater. Lett. 157, 169–171 (2015)

    Article  Google Scholar 

  28. W. Liao, D. Chen, Y. Zhang, J. Zhao, Binder-free TiO2 nanowires-C/Si/C 3D network composite as high performance anode for lithium ion battery. Mater. Lett. 209, 547–550 (2017)

    Article  Google Scholar 

  29. S. Liao, H. Donggen, D. Yu, Y. Su, G. Yuan, Preparation and characterization of ZnO/TiO2, SO42−/ZnO/TiO2 photocatalyst and their photocatalysis. J. Photochem. Photobiol., A 168(1–2), 7–13 (2004)

    Article  Google Scholar 

  30. F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystal. Sect. A Found. Adv. 72(3), 385–390 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. E.M. Abdelrazek, I.S. Elashmawi, A. El-Khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10(2), 607–613 (2010)

    Article  ADS  Google Scholar 

  32. K. Lewandowska, The miscibility of poly (vinyl alcohol)/poly (N-vinylpyrrolidone) blends investigated in dilute solutions and solids. Eur. Polymer J. 41(1), 55–64 (2005)

    Article  Google Scholar 

  33. A.M. Abdelghany, M.S. Mekhail, E.M. Abdelrazek, M.M. Aboud, Combined DFT/FTIR structural studies of monodispersed PVP/Gold and silver nanoparticles. J. Alloy. Compd. 646, 326–332 (2015)

    Article  Google Scholar 

  34. K. Sundaramahalingam, D. Vanitha, N. Nallamuthu, A. Manikandan, M. Muthuvinayagam, Electrical properties of lithium bromide polyethylene oxide/polyvinylpyrrolidone polymer blend electrolyte. Physica B 553, 120–126 (2019)

    Article  ADS  Google Scholar 

  35. N. Vijaya, S. Selvasekarapandian, H. Nithya, C. Sanjeeviraja, Proton conducting polymer electrolyte based on poly (N-vinylpyrrolidone) doped with ammonium iodide. Int. J. Electroactive Mater 3, 20–27 (2015)

    Google Scholar 

  36. C.S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P.C. Angelo, Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J. Non-Cryst. Solids 354(14), 1494–1502 (2008)

    Article  ADS  Google Scholar 

  37. K. Kaviyarasu, N. Geetha, K. Kanimozhi, C.M. Magdalane, S. Sivaranjani, A. Ayeshamariam, M. Maaza, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater. Sci. Eng., C 74, 325–333 (2017)

    Article  Google Scholar 

  38. A. Becheri, M. Dürr, P.L. Nostro, P. Baglioni, Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res. 10(4), 679–689 (2008)

    Article  ADS  Google Scholar 

  39. F.T. Johra, W.G. Jung, RGO–TiO2–ZnO composites: synthesis, characterization, and application to photocatalysis. Appl. Catal. A 491, 52–57 (2015)

    Article  Google Scholar 

  40. F.R. Cesconeto, M. Borlaf, M.I. Nieto, A.P.N. de Oliveira, R. Moreno, Synthesis of CaTiO3 and CaTiO3/TiO2 nanoparticulate compounds through Ca2+/TiO2 colloidal sols: Structural and photocatalytic characterization. Ceram. Int. 44(1), 301–309 (2018)

    Article  Google Scholar 

  41. S. Ayed, R.B. Belgacem, J.O. Zayani, A. Matoussi, Structural and optical properties of ZnO/TiO2 composites. Superlattices Microstruct. 91, 118–128 (2016)

    Article  ADS  Google Scholar 

  42. S. Kim, H. Park, G. Nam, H. Yoon, J.Y. Leem, Improved optical and electrical properties of sol–gel-derived boron-doped zinc oxide thin films. J. Sol-Gel. Sci. Technol. 67(3), 580–591 (2013)

    Article  Google Scholar 

  43. W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy (Wiley, New Jersey, 1966)

    Google Scholar 

  44. S. Patra, S. Sarkar, S.K. Bera, R. Ghosh, G.K. Paul, Hydrophobic self-cleaning surfaces of ZnO thin films synthesized by sol–gel technique. J. Phys. D Appl. Phys. 42(7), 075301 (2009)

    Article  ADS  Google Scholar 

  45. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel. Sci. Technol. 61(1), 1–7 (2012)

    Article  Google Scholar 

  46. H. Benelmadjat, B. Boudine, O. Halimi, M. Sebais, Fabrication and characterization of pure and Sn/Sb-doped ZnO thin films deposited by sol–gel method. Opt. Laser Technol. 41(5), 630–633 (2009)

    Article  ADS  Google Scholar 

  47. K.C. Yung, H. Liem, H.S. Choy, Enhanced redshift of the optical band gap in Sn-doped ZnO free standing films using the sol–gel method. J. Phys. D Appl. Phys. 42(18), 185002 (2009)

    Article  ADS  Google Scholar 

  48. U.M. Chougale, S.H. Han, M.C. Rath, V.J. Fulari, Synthesis, characterization and surface deformation study of nanocrystalline Ag2Se thin films. Mater. Phys. Mech. 17(1), 47–58 (2013)

    Google Scholar 

  49. K. Boubaker, A physical explanation to the controversial Urbach tailing universality. Eur. Phys. J. Plus 126(1), 10 (2011)

    Article  Google Scholar 

  50. C.P. Saini, A. Barman, B. Satpati, S.R. Bhattacharyya, D. Kanjilal, A. Kanjilal, Defect-engineered optical band gap in self-assembled TiO2 nanorods on Si pyramids. Appl. Phys. Lett. 108(1), 011907 (2016)

    Article  ADS  Google Scholar 

  51. R. Bhargava, S. Khan, Enhanced optical properties of Cu2O anchored on reduced graphene oxide (rGO) sheets. J. Phys.: Condens. Matter 30(33), 335703 (2018)

    Google Scholar 

  52. B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 3(1), 25 (2013)

    Article  Google Scholar 

  53. J. Zhou, Y. Zhang, X.S. Zhao, A.K. Ray, Photodegradation of benzoic acid over metal-doped TiO2. Ind. Eng. Chem. Res. 45(10), 3503–3511 (2006)

    Article  Google Scholar 

  54. Q. Xiao, Z. Si, Z. Yu, G. Qiu, Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng., B 137(1–3), 189–194 (2007)

    Article  Google Scholar 

  55. H. Zhu, B. Yang, J. Xu, Z. Fu, M. Wen, T. Guo, S. Zhang, Construction of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity. Appl. Catal. B 90(3–4), 463–469 (2009)

    Article  Google Scholar 

  56. S.J. Lee, W.M. Kriven, Crystallization and densification of nano-size amorphous cordierite powder prepared by a PVA solution-polymerization route. J. Am. Ceram. Soc. 81(10), 2605–2612 (1998)

    Article  Google Scholar 

  57. N.M. Al-Hada, E.B. Saion, A.H. Shaari, M.A. Kamarudin, M.H. Flaifel, S.H. Ahmad, S.A. Gene, A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS ONE 9(8), 1–9 (2014)

    Article  Google Scholar 

  58. P.R. Patil, S.S. Joshi, Polymerized organic-inorganic synthesis of nanocrystalline zinc oxide. Mater. Chem. Phys. 105(2–3), 354–361 (2007)

    Article  Google Scholar 

  59. C.C. Chang, P.H. Chen, C.M. Chang, Preparation and characterization of acrylic polymer–nanogold nanocomposites from 3-mercaptopropyltrimethoxysilane encapsulated gold nanoparticles. J. Sol-Gel. Sci. Technol. 47(3), 268–273 (2008)

    Article  Google Scholar 

  60. A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201(4914), 68 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the funding for the research by Universiti Putra Malaysia (UPM) under the Geran Putra Berimpak (Grant No: 9597200).

Funding

This research was funded by UPM GERAN PUTRA BERIMPAK, Grant Number 9597200 and the APC was funded by 9597200.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SM and HMK; methodology, SM and NMA-H; validation, HMK, NMA-H; formal analysis, SM; investigation, SM; resources, SM, HMK, NMA-H, CACA; writing—original draft preparation, SM; writing—review and editing, SM and NNSN; project administration, HMK; funding acquisition, HMK

Corresponding author

Correspondence to Halimah Mohamed Kamari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhamad, S., Mohamed Kamari, H., Al-Hada, N.M. et al. Fabrication of binary (ZnO)x(TiO2)1−x nanoparticles via thermal treatment route and evaluating the impact of various molar concentrations on the structure and optical behaviors. Appl. Phys. A 126, 587 (2020). https://doi.org/10.1007/s00339-020-03701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03701-4

Keywords

Navigation