Skip to main content
Log in

Investigating linearity and effect of temperature variation on analog/RF performance of dielectric pocket high-k double gate-all-around (DP-DGAA) MOSFETs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present paper is about using three popular performance boosters in a device to battle with deterioration in device characteristics imposed by temperature variation. The dielectric pocket (DP) technology has been utilized in double gate-all-around MOSFET to limit the leakage current problem. Further, high-K dielectric as gate oxide is employed so that ON-state current may be improved with enhanced device scalability. The boosted immunity towards short-channel effects (SCEs) and improvement in the device’s analog performance is demonstrated through comparison between dielectric pocket high-K double Gate-All-Around (DP-DGAA) and double Gate-All-Around (DGAA) MOSFETs with temperature variation from 300 to 500 K by using commercially available ATLAS, a three-dimensional (3D) device simulator from SILVACO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.A. Fraga, H. Furlan, R.S. Pessoa, L.A. Rasia, C.F. Mateus, Microsyst. Technol. 17, 477 (2011)

    Article  Google Scholar 

  2. F. Lacopi, M.V. Hove, M. Charles, K. Endo, MRS Bull. 40, 390 (2015)

    Article  Google Scholar 

  3. T. Tsunomura, A. Nishida, T. Hiramoto, J Appl Phys. 49, 054101 (2010)

    Article  Google Scholar 

  4. M.D. Hasanuzzaman, S.K. Islam, L.M. Tolbert, Solid-State Electronics 48, 125 (2004)

    Article  ADS  Google Scholar 

  5. J.P. Colinge, Solid-State Electronics 48, 897 (2004)

    Article  ADS  Google Scholar 

  6. J.P. Colinge, Microelectron. Eng. 84, 2071 (2007)

    Article  Google Scholar 

  7. K.J. Kuhn, IEEE Trans. Electron Devices 59, 1813 (2012)

    Article  ADS  Google Scholar 

  8. J. P. Colinge, In New York: Springer-Verlag. ISBN 978–0–387–71751–7 (2008).

  9. N.I. Boukortt, B. Hadri, A. Caddemi, G. Crupi, S. Patane, Trans. on Elect. and Electronics Matt. 17(6), 329 (2016)

    Article  Google Scholar 

  10. J.Y. Song, W.Y. Choi, J.H. Park, J.D. Lee, B.G. Park, IEEE Trans. Nanotechnol. 5(3), 186 (2006)

    Article  ADS  Google Scholar 

  11. R. Gautam, M. Saxena, R.S. Gupta, M. Gupta, Microelectron. Reliab. 54, 37 (2014)

    Article  Google Scholar 

  12. W. Lu, P. Xie, C.M. Lieber, IEEE Trans. Electron Devices 55, 2859 (2008)

    Article  ADS  Google Scholar 

  13. H.M. Fahad, C.E. Smith, J.P. Rojas, M.M. Hussain, Nano Lett. 11, 4393 (2011)

    Article  ADS  Google Scholar 

  14. D. Tekleab, H.H. Tran, J.W. Sleight, and Chidambarrao, U.S. Patent 20120217468 A1(2012).

  15. H.M. Fahad, M.M. Hussain, Sci Rep 2, 475 (2012)

    Article  ADS  Google Scholar 

  16. D. Tekleab, IEEE Electron Device Lett. 35(5), 506 (2014)

    Article  ADS  Google Scholar 

  17. Kumar, S. Bhushan, and P.K. Tiwari, IEEE Trans. Nanotechnol, 16(5),868(2017).

  18. M. Jurczak, M. Skotnicki, R. Gwoziecki, M. Paoli, B. Tormen, P. Ribot, D. Dutartre, S. Monfiray, J. Galvier, IEEE Trans. Electron Devices 48, 1770 (2001)

    Article  ADS  Google Scholar 

  19. O.P. Kok, K. Ibrahim, Jpn. J. Appl. Phys 48, 111201 (2009)

    Article  ADS  Google Scholar 

  20. V. Kumari, M. Saxena, R.S. Gupta, M. Gupta, Microelectron. Reliab. 52(8), 1610 (2012)

    Article  Google Scholar 

  21. V. Kumari, M. Saxena, R.S. Gupta, M. Gupta, IEEE Trans. Nanotechnol. 13(4), 667 (2014)

    Article  ADS  Google Scholar 

  22. R. Upasana, M. Narang, M. Saxena, Gupta. Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.02.013

    Article  Google Scholar 

  23. V. Kumari, M. Gupta, M. Saxena, R.S. Gupta, IEEE International Conference on Emerging Electronics ICEmElec., 6636264 (2012).

  24. V. Kumari, M. Saxena, R.S. Gupta, M. Gupta, Microelect. Reliability 25, 974 (2012)

    Article  Google Scholar 

  25. V. Kumari, M. Saxena, R.S. Gupta, M. Gupta, IEEE Trans. Electron Devices 59(10), 2567 (2012)

    Article  ADS  Google Scholar 

  26. V. Kumari, M. Saxena, R.S. Gupta, M. Gupta, IEEE Trans. Device Mater. Reliab. 14(1), 390 (2014)

    Article  Google Scholar 

  27. B. Singh, D. Gola, K. Singh, E. Goel, S. Kumar, S. Jit, IEEE Trans. Electron Devices 64(3), 901 (2017)

    Article  ADS  Google Scholar 

  28. P. Saha, T. Kumari, S. K. Sarkar (2017), IETE Technical Review, https://doi.org/10.1080/02564602.2017.1381049 10.1080/02564602.2017.1381049.

  29. N. Trivedi, M. Kumar, S. Halder, S.S. Deswal, M. Gupta, R.S. Gupta, Microsyst Technology 25, 1547 (2019)

    Article  Google Scholar 

  30. Y. Pratap and J.H.K. Verma, Silicon, (2020), httsp://doi.org/10.1007/s12633–019–00357–5.

  31. ATLAS User’s Manual 3-D Device Simulator Software, Silvaco. Inc. (2016)

  32. D. Querlioz, J.S. Martin, K. Huet, A. Bournel, V. Aubry-Fortuna, C. Chassat, S. Galdin-Retailleau, P. Dollfus, IEEE Trans Electron Dev. 54(9), 2232 (2007)

    Article  ADS  Google Scholar 

  33. G. Niu, Q. Liang, J. D. Cressler, C.S. Webster, D. L. Harame IEEE Trans. Microw. Theory Tech., 49(9),1558(2001)

  34. S. Kaya, W. Ma, IEEE Electron Device Lett. 25(5), 308 (2004)

    Article  ADS  Google Scholar 

  35. P. Ghosh, S. Halder, R.S. Gupta, M. Gupta, IEEE Trans. Elect. Device 59(12), 3263 (2012)

    Article  ADS  Google Scholar 

  36. S.M. Sze Physics of semiconductor Devices, 2nd ed. Wiley New York (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Dubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purwar, V., Gupta, R., Kumar, N. et al. Investigating linearity and effect of temperature variation on analog/RF performance of dielectric pocket high-k double gate-all-around (DP-DGAA) MOSFETs. Appl. Phys. A 126, 746 (2020). https://doi.org/10.1007/s00339-020-03929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03929-0

Keywords

Navigation