Skip to main content
Log in

First-principle calculation of the band structure of Ge1−xSnx alloy by screened-exchange local-density approximation theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic properties of Ge1−xSnx were studied by the sX-LDA method. It is found that the bowing coefficient of the direct bandgap energy depends on composition obviously while the bowing coefficients of the Γ–L and Γ–X bandgap energies depend on composition weakly. As the atom size mismatch (ASM) between Ge and Sn atoms is large and the electronegativity difference (ED) between them is relatively small, the ASM should play a more important role than the ED in determining the bowing coefficient. The decrease of the direct bandgap bowing coefficient is owing to that the direct bandgap energy goes through from the impurity-like region to the band-like region in the Ge-rich range. According to the fitting results, the transition from the indirect to direct bandgap occurs when about 6% of Ge atoms are replaced by Sn atoms. The larger band bowing of Ge1−xSnx than Si1−xGex can be attributed to the ASM. In addition, the larger bowing of the CBM than the VBM is relative to the components of the two bands and the band offsets between Ge and Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K.C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, K. Saraswat, Opt. Express. 19, 25866 (2011)

    Article  ADS  Google Scholar 

  2. R. Milazzo, E. Napolitani, G. Impellizzeri, G. Fisicaro, S. Boninelli, M. Cuscunà, D.D. Salvador, M. Mastromatteo, M. Italia, A.L. Magna, G. Fortunato, F. Priolo, V. Privitera, A. Carnera, J. Appl. Phys. 115, 053501 (2014)

    Article  ADS  Google Scholar 

  3. S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, H. Sigg, J. Faist, D. Buca, D. Grützmacher, Nat. Photonics 9, 88 (2015)

    Article  ADS  Google Scholar 

  4. R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, J. Michel, Opt. Express 20, 11316 (2012)

    Article  ADS  Google Scholar 

  5. J.F. Liu, X.C. Sun, D. Pan, X.X. Wang, C.K. Lionel, L.K. Thomas, J. Michel, Opt. Express 15, 11272 (2007)

    Article  ADS  Google Scholar 

  6. B. Dutt, D.S. Sukhdeo, D. Nam, B.M. Vulovic, Z. Yuan, K.C. Saraswat, IEEE Photonics J. 4, 2002 (2012)

    Article  ADS  Google Scholar 

  7. M.H. Lee, P.L. Liu, Y.A. Hong, Y.T. Chou, J.Y. Hong, Y.J. Siao, J. Appl. Phys. 113, 063517 (2013)

    Article  ADS  Google Scholar 

  8. L. Jiang, J.D. Gallagher, C.L. Senaratne, T. Aoki, J. Mathews, J. Kouvetakis, J. Menéndez, Semicond. Sci. Tech. 29, 115028 (2014)

    Article  ADS  Google Scholar 

  9. C.Z. Zhao, X.T. Li, X.D. Sun, S.S. Wang, J. Wang, J. Electron. Mater. 48, 1599 (2019)

    Article  ADS  Google Scholar 

  10. J.D. Gallagher, C.L. Senaratne, J. Kouvetakis, J. Menéndez, Appl. Phys. Lett. 105, 142102 (2014)

    Article  ADS  Google Scholar 

  11. J. Mathews, R.T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, J. Menéndez, Appl. Phys. Lett. 97, 221912 (2010)

    Article  ADS  Google Scholar 

  12. V.R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menéndez, J. Kouvetakis, Semicond. Sci. Technol. 24, 115006 (2009)

    Article  ADS  Google Scholar 

  13. K. Alberi, J. Blacksberg, L.D. Bell, S. Nikzad, K.M. Yu, O.D. Dubon, W. Walukiewicz, Phys. Rev. B 77, 073202 (2008)

    Article  ADS  Google Scholar 

  14. K. Zelazna, M.P. Polak, P. Scharoch, J. Serafinczuk, M. Gladysiewicz, J. Misiewicz, J. Dekoster, R. Kudrawiec, Appl. Phys. Lett. 106, 142102 (2015)

    Article  ADS  Google Scholar 

  15. K.L. Low, Y. Yang, G. Han, W. Fan, Y.C. Yeo, J. Appl. Phys. 112, 103715 (2012)

    Article  ADS  Google Scholar 

  16. W.J. Yin, X.G. Gong, S.H. Wei, Phys. Rev. B 78, 161203(R) (2008)

    Article  ADS  Google Scholar 

  17. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, Z. Krist. Cryst. Mater. 220, 567 (2005)

    Google Scholar 

  18. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  19. D.J. Chadi, Phys. Rev. B 16, 1746 (1977)

    Article  ADS  Google Scholar 

  20. G.P. Bernd, C. Michel, G.L. Steven, L.C. Marvin, J. Comput. Phys. 131, 233 (1997)

    Article  Google Scholar 

  21. K.A. Mäder, A. Baldereschi, H. Von Känel, Solid State Commun. 69, 1123 (1989)

    Article  ADS  Google Scholar 

  22. C.H. Yang, Z.Y. Yu, Y.M. Liu, P.F. Lu, T. Gao, M. Li, S. Manzoor, Phys B 427, 62 (2013)

    Article  ADS  Google Scholar 

  23. S. Gupta, B. Magyari-Köpe, Y. Nishi, K.C. Saraswat, J. Appl. Phys. 113, 073707 (2013)

    Article  ADS  Google Scholar 

  24. M.P. Polak, P. Scharoch, R. Kudrawiec, J. Phys. D Appl. Phys. 50, 195103 (2017)

    Article  ADS  Google Scholar 

  25. A. Chizmeshya, M. Bauer, J. Kouvetakis, Chem. Mater. 15, 2511 (2003)

    Article  Google Scholar 

  26. W. Huang, B. Cheng, C. Xue, Z. Liu, J. Appl. Phys. 118, 165704 (2015)

    Article  ADS  Google Scholar 

  27. Z. Zhu, J. Xiao, H. Sun, Y. Hu, R. Cao, Y. Wang, L. Zhao, J. Zhuang, Phys. Chem. Chem. Phys. 17, 21605 (2015)

    Article  Google Scholar 

  28. S. Groves, C. Pidgeon, A. Ewald, R. Wagner, J. Phys. Chem. Solids 31, 2031 (1970)

    Article  ADS  Google Scholar 

  29. P. Moontragoon, Z. Ikonic, P. Harrison, Semicond. Sci. Tech. 22, 742 (2007)

    Article  ADS  Google Scholar 

  30. S.H. Wei, A. Zunger, Phys. Rev. Lett. 76, 664 (1996)

    Article  ADS  Google Scholar 

  31. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, J. Wang, Appl. Phys. A 125, 145 (2019)

    Article  ADS  Google Scholar 

  32. C.-Y. Moon, S.-H. Wei, Y.Z. Zhu, G.D. Chen, Phys. Rev. B. 74, 233202 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (61874077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-zhen Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Cz., Sun, Sy., Zhu, Mm. et al. First-principle calculation of the band structure of Ge1−xSnx alloy by screened-exchange local-density approximation theory. Appl. Phys. A 126, 131 (2020). https://doi.org/10.1007/s00339-020-3323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3323-0

Keywords

Navigation