Skip to main content

Advertisement

Log in

Size and shape dependence of optical properties of nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A phenomenological model based on thermodynamical variables is used to analyze the optical properties of nanomaterials. The expression of cohesive energy given by Qi and Wang model is extended to study the variation of the energy band gap, vibrational frequency, and static dielectric constant with size for nanoparticles, nanowires, and nanofilms. The energy bandgap is observed to increase in nanostructures with a reduction in size while the reduction in the vibrational frequency of nanostructures is found with a decrease in size from model calculations. The dielectric constant is also found decreasing with the size reduction of the nanostructure to the nanoscale. As the number of surface atoms changes with change in the shape of the nanomaterial, the shape effect on optical properties is also studied. The size and shape effect are found prominent in nanostructures up to the size limit of approximately 30 nm; however, the effect of size and shape becomes less significant as the size is more than 30 nm. The model predictions are consistent with the available experimental and simulated trend which supports the validity of the model theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, B. Daudin, Nanotechnology 24, 115704 (2013)

    Article  ADS  Google Scholar 

  2. A.S. Edelstein, R.C. Cammarata, Nanomaterials: synthesis, properties and applications (Institute of Physics, Bristol, 1996)

    Book  Google Scholar 

  3. B. Bonham, G. Guisbiers, Nanotechnology 28, 245702 (2017)

    Article  ADS  Google Scholar 

  4. L. Huang, Z.L. Wei, F.M. Zhang, X.S. Wu, J Alloys Compd 648, 591 (2015)

    Article  Google Scholar 

  5. J.A. Van Vechten, M. Wautelet, Phys Rev B 23, 5543 (1981)

    Article  ADS  Google Scholar 

  6. G. Guisbiers, M. Kazan, O.V. Overschelde, M. Wautelet, S. Pereira, J Phys Chem C 112, 4097 (2008)

    Article  Google Scholar 

  7. G. Guisbiers, Adv Phys X 4, 1668299 (2019)

    Google Scholar 

  8. C.C. Yang, Y.-W. Mai, Mater Sci Eng R Rep 79, 1 (2014)

    Article  Google Scholar 

  9. M. Goyal, B.R.K. Gupta, Pramana J Phys 90(6), 80 (2018)

    Article  ADS  Google Scholar 

  10. M. Singh, M. Goyal, K. Devlal, J Taibah Univ Sci 12, 470 (2018)

    Article  Google Scholar 

  11. M. Li, H. Li, IEEE Trans Nanotechnol 11, 1004 (2012)

    Article  ADS  Google Scholar 

  12. C. Delerue, M. Lannoo, G. Allan, Phys Rev B 68, 115411 (2003)

    Article  ADS  Google Scholar 

  13. H. Li, H.J. Xiao, T.S. Zhu, H.C. Xuan, M. Li, J Phys Chem 119, 12002 (2015)

    Google Scholar 

  14. A. Biswas, A. Corani, A. Kathiravan, Y. Infahsaeng, A. Yartsev, V. Sundstrom, Nanotechnology 24, 195601 (2013)

    Article  ADS  Google Scholar 

  15. W.H. Qi, M.P. Wang, Mater Chem Phys 88, 280 (2004)

    Article  Google Scholar 

  16. J. Shanker, M. Kumar, Phys Status Solid B 158, 11 (1990)

    Article  ADS  Google Scholar 

  17. R. Kumar, G. Sharma, M. Kumar, J Thermodyn 328051, 1 (2013)

    Google Scholar 

  18. C. Kittel, Introduction to solid state physics, 7th edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  19. M. Li, J.C. Li, Mater Lett 60, 2526 (2006)

    Article  Google Scholar 

  20. R. Zallen, The physics of amorphous solids (Wiley, New York, 1983)

    Book  Google Scholar 

  21. C.Q. Sun, X.W. Sun, B.K. Tay, S.P. Lau, H.T. Huang, S. Li, J Phys D Appl Phys 34, 2359 (2001)

    Article  ADS  Google Scholar 

  22. H.M. Lu, X.K. Meng, Sci Rep 5, 16939 (2015)

    Article  ADS  Google Scholar 

  23. D.R. Penn, Phys Rev 128, 2093 (1962)

    Article  ADS  Google Scholar 

  24. W.H. Qi, M.P. Wang, Q.H. Liu, J Mater Sci 40, 2737 (2005)

    Article  ADS  Google Scholar 

  25. W.H. Qi, B.Y. Huang, M.P. Wang, Z.M. Yin, J. Li, Phys B 403, 2386 (2008)

    Article  ADS  Google Scholar 

  26. W.H. Qi, Phys B 368, 46 (2005)

    Article  ADS  Google Scholar 

  27. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science 299, 1874 (2003)

    Article  ADS  Google Scholar 

  28. H. Yu, J. Li, R.A. Loomis, L.W. Wang, W.E. Buhro, Nat Mat 21, 517 (2003)

    Article  Google Scholar 

  29. J. Li, L.W. Wang, Phys Rev 72, 125325 (2005)

    Article  ADS  Google Scholar 

  30. G.X. Cheng, H. Xia, K.J. Chen, W. Zhang, X.K. Zhang, Phys Stat Sol 118, K51 (1990)

    Article  ADS  Google Scholar 

  31. Ch. Ossadnik, S. Veprek, I. Gregora, Thin Solid Films 337, 148 (1999)

    Article  ADS  Google Scholar 

  32. Y. Feng, Y. Liu, B. Wang, Acta Mech 217, 149 (2011)

    Article  Google Scholar 

  33. H.M. Cheng, K.F. Lin, H.C. Hsu, C.J. Lin, L.J. Lin, W.F. Heish, J Phys Chem B 109, 18385 (2005)

    Article  Google Scholar 

  34. M.J. Seong, O.I. Micic, A.J. Nozik, A.M. Ascarenhas, H.M. Cheong, Appl Phys Lett 82, 185 (2003)

    Article  ADS  Google Scholar 

  35. H.G. Yoo, P.M. Fauchet, Phys Rev B 77, 115355 (2008)

    Article  ADS  Google Scholar 

  36. R. Tsu, D. Babic, Appl Phys Lett 64, 1806 (1994)

    Article  ADS  Google Scholar 

  37. R. Tsu, L. Ioriatti, J.F. Harvey, H. Shen, R.A. Lux, Mater Res Soc Symp Proc 283, 437 (1993)

    Article  Google Scholar 

  38. M. Li, J.C. Li, Q. Jiang, Int J Mod Phys B 24, 2297 (2010)

    Article  ADS  Google Scholar 

  39. C.C. Yang, Q. Jiang, Mater Sci Eng B 131, 191 (2006)

    Article  Google Scholar 

  40. C.C. Yang, S. Li, J Phys Chem C 112, 14193 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Goyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, M., Singh, M. Size and shape dependence of optical properties of nanostructures. Appl. Phys. A 126, 176 (2020). https://doi.org/10.1007/s00339-020-3327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3327-9

Keywords

Navigation