Skip to main content
Log in

Selective noble-metal deposition modulation on photocurable polydimethylsiloxane films for electronics device applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Selective metal-vapor deposition on organic surfaces is an interesting phenomenon and is applicable to prepare fine metal patterns for various electronic and photonic devices based on vacuum evaporation without a shadow mask. However, selective metal-vapor deposition with photochromic diarylethenes has not been successful for noble metals such as Au, Ag and Cu, which are generally used in the electronics field. In this paper, we report deposition modulation of noble-metal vapor on a photocurable polydimethylsiloxane (PDMS) film. When Au, Ag or Cu was vacuum-deposited on the UV-curable PDMS, Au and Cu formed a film on the surface even on the uncured film. Ag, however, was desorbed from the uncured film, and a small amount of evaporated Ag atoms was absorbed into the film. This metal species dependence on metal-deposition/desorption tendency was correlated with the intrinsic vapor pressure of metal species; metals with a high vapor pressure tend to desorb. The uncured film with a small amount of Ag deposition was easily removed with a hexane rinse, leaving only Ag on the cured film. Using this principle, various Ag-film patterns were prepared by irradiating upon UV light with a photomask to form a cured pattern and using maskless Ag deposition. Furthermore, we succeeded in fabrication of fine Ag patterns with a width of several micron by UV-laser scanning and maskless Ag-vapor deposition. This method would be applied to the electrode/wiring for various electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. R.R. Tummala, What is it and why? A new microsystem-integration technology paradigm-Moore’s law for system integration of miniaturized convergent systems of the next decade. IEEE Trans. Adv. Packageing 27, 242–249 (2004)

    Google Scholar 

  2. J. Zhao, Y. Zhang, X. Zhao, R. Wang, J. Xie, C. Yang, J. Wang, Q. Zhang, L. Li, C. Lu, Y. Yao, Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Func. Mater. 29, 1903965 (2019)

    Article  Google Scholar 

  3. R. Wakamatsu, J. Taniguchi, Nanoscale metal pattern-transfer technique using silver ink. Microelec. Eng. 123, 94–99 (2014)

    Article  Google Scholar 

  4. A.D. Valentine, T.A. Busbee, J.W. Boley, J.R. Raney, A. Chortos, A. Kotikian, J.D. Berrigan, M.F. Durstock, J.A. Lewis, Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017)

    Article  Google Scholar 

  5. K. An, S. Hong, S. Han, H. Lee, J. Yeo, S.H. Ko, Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device. ACS Appl. Mater. Int. 6, 2786–2790 (2014)

    Article  Google Scholar 

  6. H. Oh, M. Lee, Laser-induced electrical property patterning of Ag nanowire transparent electrode. Mater. Lett. 176, 110–113 (2016)

    Article  Google Scholar 

  7. X.-Y. Zeng, Q.-K. Zhang, R.-M. Yu, C.-Z. Lu, A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 22, 4484–4488 (2010)

    Article  Google Scholar 

  8. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014)

    Article  Google Scholar 

  9. F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012)

    Article  Google Scholar 

  10. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011)

    Article  Google Scholar 

  11. D.L. Smith, Thin-Film Deposition: Principles and Practice (McGraw-Hill, New York, 1995).

    Google Scholar 

  12. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009)

    Article  ADS  Google Scholar 

  13. K.-J. Baeg, Y.-Y. Noh, J. Ghim, S.-J. Kang, H. Lee, D.-Y. Kim, Organic non-volatile memory based on pentacene field-effect transistor using a polymeric gate electret. Adv. Mater. 18, 3179–3183 (2006)

    Article  Google Scholar 

  14. R. Schroeder, L.A. Majewski, M. Grell, All-organic parmanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv. Mater. 16, 633–636 (2004)

    Article  Google Scholar 

  15. Th.B. Singh, N. Marjanovic, G.J. Matt, N.S. Sariciftci, R. Schwödiauer, S. Bauer, Nonvolatile organic field-effect transistor memory element with a polymeric gate element. Appl. Phys. Lett. 29, 5409–5411 (2004)

    Article  ADS  Google Scholar 

  16. N.R. Hosseini, J.-S. Lee, Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Func. Mater. 25, 5586–5592 (2015)

    Article  Google Scholar 

  17. R.H. Kim, H.J. Kim, I. Bae, S.K. Hwang, D.B. Velusamy, S.M. Cho, K. Takahashi, T. Muto, D. Hashizume, M. Uchiyama, P. Andre, F. Mathevet, B. Heinrich, T. Aoyama, D.-E. Kim, H. Lee, J.-C. Ribierre, C. Park, Non-volatile organic memory with sub-millimetre bending radius. Nat. Comm. 5, 3583 (2014)

    Article  ADS  Google Scholar 

  18. Y.-C. Chiu, I. Otsuka, S. Halila, R. Borsali, W.-C. Chen, High-performance nonvolatile memories of pentacene using the green electrets of sugar-based block copolymers and their supramolecules. Adv. Func. Mater. 24, 4240–4249 (2014)

    Article  Google Scholar 

  19. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh, W.-F. Su, Y.-J. Yang, Y.-F. Chen, Stretchable organic memory: toward learnable and digitized stretchable electronic applications. NPG Asia Mater. 6, 85 (2014)

    Article  Google Scholar 

  20. E.J. Yoo, M. Lyu, J.-H. Yun, C.J. Kang, Y.J. Choi, L. Wang, Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices. Adv. Mater. 27, 6170–6175 (2015)

    Article  Google Scholar 

  21. T. Tsujioka, Y. Sesumi, R. Takagi, K. Masui, S. Yokojima, K. Uchida, S. Nakamura, Selective metal deposition on photoswitchable molecular surfaces. J. Am. Chem. Soc. 130, 10740–10747 (2008)

    Article  Google Scholar 

  22. T. Tsujioka, Selective metal deposition on organic surfaces for device applications. J. Mater. Chem. C 2, 221–227 (2014)

    Article  Google Scholar 

  23. T. Tsujioka, Selective metal-vapor deposition on organic surfaces. Chem. Rec. 16, 231–248 (2016)

    Article  Google Scholar 

  24. T. Tsujioka, K. Hoshimoto, Minute organic memory fabricated by laser scanning and selective metal-vapor deposition of a diarylethene-Cu composite film. Adv. Electron. Mater. 5, 1800491 (2019)

    Article  Google Scholar 

  25. Y. Sesumi, S. Yokojima, S. Nakamura, K. Uchida, T. Tsujioka, Light-controlled selective metal deposition on a photochromic diarylethene film-Toward new applications in electronics and photonics. Bull. Chem. Soc. Jpn. 83, 756–761 (2010)

    Article  Google Scholar 

  26. T. Tsujioka, S. Matsumoto, Nucleation, absorption, or desorption of metal-vapor atoms on amorphous photochromic diarylethene films having a low glass transition temperature. J. Mater. Chem. C 6, 9786–9793 (2018)

    Article  Google Scholar 

  27. T. Tsujioka, K. Tsuji, Metal-vapor deposition modulation on soft polymer surfaces. Appl. Phys. Express 5, 021601 (2012)

    Article  ADS  Google Scholar 

  28. S. Varagnolo, J. Lee, H. Amari, R.A. Hatton, Selective deposition of silver and copper films by condensation coefficient modulation. Mater. Horizons 7, 143–148 (2020)

    Article  Google Scholar 

  29. K. Obata, S. Slobin, A. Schonewille, A. Hohnholz, C. Unger, J. Koch, O. Suttmann, L. Overmeyer, UV laser direct writing of 2D/3D structures using photo-curable polydimethylsiloxane (PDMS). Appl. Phys. A 123, 495 (2017)

    Article  ADS  Google Scholar 

  30. V. Gupta, P.T. Probst, F.R. Goßler, A.M. Steiner, J. Schubert, Y. Brasse, T.A.F. König, A. Fery, Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. Appl. Mater. Interfaces 11, 28189–28196 (2019)

    Article  Google Scholar 

  31. K. Tian, J. Bae, S.E. Bakarich, C. Yang, R.D. Gately, G.M. Spinks, M. Panhuis, Z. Suo, J.J. Vlassak, 3D Printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv. Mater. 29, 1604827 (2017)

    Article  Google Scholar 

  32. H. Li, B. Dong, X. Zhang, X. Shu, X. Chen, R. Hai, D.A. Czaplewski, H.F. Zhang, C. Sun, Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography. Nat. Commun. 10, 4277 (2019)

    Article  ADS  Google Scholar 

  33. L.L. Taylor, J. Xu, M. Pomerantz, T.R. Smith, J.C. Lambropoulos, J. Qiao, Femtosecond laser polishing of germanium. Opt. Mater. Express 9, 4165–4177 (2019)

    Article  ADS  Google Scholar 

  34. T. Tsujioka, R. Shirakawa, S. Matsumoto, Metal-vapor integration/transportation based on metal-atom desorption from polymer surfaces with a low glass-transition temperature. J. Vac. Sci. Technol. A 35, 020603 (2017)

    Article  Google Scholar 

  35. T. Tsujioka, S. Matsumoto, K. Yamamoto, M. Dohi, Y. Lin, S. Nakamura, S. Yokojima, K. Uchida, Surface molecular kinetics on the outermost layer characterized by nucleation of Mg-vapor atoms. Appl. Surf. Sci. 490, 309–317 (2019)

    Article  ADS  Google Scholar 

  36. S. Link, M.A. l-Sayed, , Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Tsuyoshi Tsujioka contributed to conceptualization, methodology, validation, verification and writing—original draft. Akari Nishimura contributed to methodology, investigation and validation.

Corresponding author

Correspondence to Tsuyoshi Tsujioka.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujioka, T., Nishimura, A. Selective noble-metal deposition modulation on photocurable polydimethylsiloxane films for electronics device applications. Appl. Phys. A 127, 228 (2021). https://doi.org/10.1007/s00339-021-04385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04385-0

Keywords

Navigation