Skip to main content
Log in

Fe-functionalized zigzag GaN nanoribbon for nanoscale spintronic/interconnect applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper investigated the Zigzag GaN nanoribbons (ZGaNNR) using the density functional theory(DFT) and non equilibrium Green’s function(NEGF) framework. We have calculated the structural, electronic and transport properties of various Fe-ZGaNNR configurations. Based on the binding energy(\(E_{B}\)) calculations, Fe-doped@Ga_edge ZGaNNR(-6.51eV) is observed to be most structurally stable among different configurations. Our findings show the substitutional Fe passivation provides a stable bonding as compared to pristine configuration. The magnetic moment of different configurations depends upon the position of Fe atom. The discontinuity is observed in degenerative states of spin modes and same is follows by their respective density of states(DOS) and projected density of states(PDOS). Fe-termination@N_edge ZGaNNR is found to be a strong candidate for magnetic stabilization. High metallicity is observed in Fe-termination@both_the_edges ZGaNNR configuration. Further same is verified through current-voltage characteristics as current follow the pure linear behaviour. The practical application of the work on ZGaNNR can serve as a potential candidate for future low bias nanoscale spitronic devices and low power high speed interconnect applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K Geim , K.S Novoselov (2010). The rise of graphene pp. 11–19

  2. J. Williams, L. DiCarlo, C. Marcus, Quantum hall effect in a gate-controlled pn junction of graphene. Science 317(5838), 638–641 (2007)

    Article  ADS  Google Scholar 

  3. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, (2005) Two-dimensional gas of massless dirac fermions in graphene. nature, 438(7065):197–200

  4. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. phys. Rev. B 54(24), 17954 (1996)

    Article  ADS  Google Scholar 

  5. Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)

    Article  ADS  Google Scholar 

  6. . Lee, X. Wei, J.W. Kysar, J. Hone, (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388

  7. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  ADS  Google Scholar 

  8. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. small, 11(6), 640–652

  9. B.C. Chung, M. Gershenzon, The influence of oxygen on the electrical and optical properties of gan crystals grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 72(2), 651–659 (1992)

    Article  ADS  Google Scholar 

  10. Z. Li, X. Chen, H. Li, Q. Tu, Z. Yang, Y. Xu, B. Hu, Synthesis and raman scattering of gan nanorings, nanoribbons and nanowires. Appl. Phys. A 72(5), 629–632 (2001)

    Article  ADS  Google Scholar 

  11. J.J. Dong, Comments on the influence of the 1st aln and the 2nd gan layers on properties of algan/2nd aln/2nd gan/1st aln/1st gan structure. Appl. Phys. A 113(2), 339–339 (2013)

    Article  ADS  Google Scholar 

  12. C. Zhu, W. Fong, B. Leung, C. Surya, Characterization of high-quality mbe-grown gan films on intermediate-temperature buffer layers. Appl. Phys. A 72(4), 495–497 (2001)

    Article  ADS  Google Scholar 

  13. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281(5379), 951–956 (1998)

    Article  ADS  Google Scholar 

  14. I. Žutić, J. Fabian, S.D. Sarma, Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76(2), 323 (2004)

    Article  ADS  Google Scholar 

  15. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74(16), 161306 (2006)

    Article  ADS  Google Scholar 

  16. A.R. Botello-Méndez, F. López-Urías, M. Terrones, H. Terrones, Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett. 8(6), 1562–1565 (2008)

    Article  ADS  Google Scholar 

  17. Y. Li, Z. Zhou, S. Zhang, Z. Chen, Mos2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130(49), 16739–16744 (2008)

    Article  Google Scholar 

  18. L. Sun, Y. Li, Z. Li, Q. Li, Z. Zhou, Z. Chen, J. Yang, J. Hou, Electronic structures of sic nanoribbons. J. Chem. Phys. 129(17), 174114 (2008)

    Article  ADS  Google Scholar 

  19. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2(2), 101–104 (2002)

    Article  ADS  Google Scholar 

  20. S.Y. Bae, H.W. Seo, J. Park, H. Yang, S.A. Song, Synthesis and structure of gallium nitride nanobelts. Chem. Phys. Lett. 365(5–6), 525–529 (2002)

    Article  ADS  Google Scholar 

  21. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.J. Choi, P. Yang, Single-crystal gallium nitride nanotubes. Nature 422(6932), 599–602 (2003)

    Article  ADS  Google Scholar 

  22. L. Yang, X. Zhang, R. Huang, G. Zhang, X. An, Synthesis of single crystalline gan nanoribbons on sapphire (0001) substrates. Solid state Commun. 130(11), 769–772 (2004)

    Article  ADS  Google Scholar 

  23. X. Xiang, C. Cao, F. Huang, R. Lv, H. Zhu, Synthesis and characterization of crystalline gallium nitride nanoribbon rings. J. Cryst. Growth 263(1–4), 25–29 (2004)

    Article  ADS  Google Scholar 

  24. B. Xu, B. Pan, Size-dependent electronic and optical properties of gan nanotubes studied using lda calculations. Phys. Rev. B 74(24), 245402 (2006)

    Article  ADS  Google Scholar 

  25. S. Ismail-Beigi, Electronic excitations in single-walled gan nanotubes from first principles: Dark excitons and unconventional diameter dependences. Phys. Rev. B 77(3), 035306 (2008)

    Article  ADS  Google Scholar 

  26. S.V. Inge, N.K. Jaiswal, P.N. Kondekar, Realizing negative differential resistance/switching phenomena in zigzag gan nanoribbons by edge fluorination: a dft investigation. Adv. Mater. Interfaces 4(19), 1700400 (2017)

    Article  Google Scholar 

  27. C. Guo, T. Chen, L. Xu, Q. Li, Z. Xu, M. Long, (2020) Modulation of electronic structure properties of c/b/al-doped armchair gan nanoribbons. Molecular Physics 118(7): e1656833

  28. Y.Y. Tomashpolsky, V. Matyuk, N. Sadovskaya, Effect of gallium nitride film growth conditions on surface segregation. Inorg. Mater. 54(1), 26–31 (2018)

    Article  Google Scholar 

  29. M.D. Brubaker, P.T. Blanchard, J.B. Schlager, A.W. Sanders, A. Roshko, S.M. Duff, J.M. Gray, V.M. Bright, N.A. Sanford, K.A. Bertness, On-chip optical interconnects made with gallium nitride nanowires. Nano Lett. 13(2), 374–377 (2013)

    Article  ADS  Google Scholar 

  30. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen et al., Quantumatk: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Conden. Matter 32(1), 015901 (2019)

    Article  ADS  Google Scholar 

  31. K. Burke, Leading correction to the local density approximation of the kinetic energy in one dimension. J. Chem. Phys. 152(8), 081102 (2020)

    Article  Google Scholar 

  32. M.P. More, P.K. Deshmukh, Computational studies and biosensory applications of graphene-based nanomaterials: a state-of-the-art review. Nanotechnology 31(43), 432001 (2020)

    Article  ADS  Google Scholar 

  33. Y. Shi, C. Wang, M. Shen, T. Wang, M. Wang, Exploring the spin polarization and electronic transport properties for zigzag mos2 nanoribbons with antisite defects. Phys. E Low Dimens. Syst. Nanostruct. 119, 113968 (2020)

    Article  Google Scholar 

  34. Parashar, S (2020) Transport properties of hybrid biphenyl molecular junctions with zigzag graphene nanoribbon electrodes. In: AIP Conference Proceedings, 2220: 130034. AIP Publishing LLC

  35. T. Chen, C. Guo, L. Xu, Q. Li, K. Luo, D. Liu, L. Wang, M. Long, Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study. Phys. Chem. Chem. Phys. 20(8), 5726–5733 (2018)

    Article  Google Scholar 

  36. T. Chen, C. Guo, Q. Li, L. Xu, L. Wang, M. Long, C. Shuai, High-performance spin rectification in gallium nitride-based molecular junctions with asymmetric edge passivation. J. Appl. Phys. 124(21), 215102 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank PDPM-Indian Institute of Information Technology, Design and Manufacturing Jabalpur for providing the computational facilities and Indian Institute of Information Technology Vadodara for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Jha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatkar, M., Jha, K.K. & Patra, S.K. Fe-functionalized zigzag GaN nanoribbon for nanoscale spintronic/interconnect applications. Appl. Phys. A 127, 418 (2021). https://doi.org/10.1007/s00339-021-04536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04536-3

Keywords

Navigation