Skip to main content

Advertisement

Log in

Bioinspired micro- and nanostructures used for fog harvesting

  • Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Water scarcity forms a risk to sustainable development in arid and semi-arid areas. Fog harvesting is a sustainable source for drinking water because of its passive collection, minimal energy requirement, and low maintenance cost. Creatures living in desert areas can survive well because they can extract water directly from the atmosphere usually owing to their hierarchical micro- and nanostructures. Bioinspired structures used to harvest fog have drawn immense attention in recent years. Various bioinspired surfaces for water harvesting are reviewed including plants (cactus, lotus, rice, pitaya, Cotula fallax, Eremopyrum orientale, Salsola crassa, and Gladiolus dalenii) and animals (Stenocara Beetle, spider silk, lizard, cicada wing, earthworms, caterpillars, and mussels) from the aspects of fabrication processes and water collecting efficiency. A comparison table is given with the maximum water collecting efficiency 5300 mg/(cm2 h). Water transportation and collection are also briefly discussed. Inspiration from nature is just a starting point. The ultimate goal is to increase both the efficiency and the amount of fog harvesting in order to practical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Yes.

References

  1. Water Scarcity | International Decade for Action, “Water for Life” 2005−2015. http://www.un.org/waterforlifedecade/scarcity.shtml. Accessed 20 Oct 2020

  2. M. Qadir et al., Fog water collection: challenges beyond technology. Water 10(4), 372 (2018). https://doi.org/10.3390/w10040372

    Article  Google Scholar 

  3. O.M. Hard, MSh. Salem, GHAbd. El-Hay, Kh.M. Makled, Fog water harvesting providing stability for small bedwe communities lives in north cost of Egypt. Ann. Agric. Sci. 61(1), 105–110 (2016). https://doi.org/10.1016/j.aoas.2016.01.001

    Article  Google Scholar 

  4. K. Otto et al., Fog as a fresh-water resource: overview and perspectives. Ambio 41(3), 221–234 (2012). https://doi.org/10.1007/s13280-012-0247-8

    Article  Google Scholar 

  5. C. Potter, Measurements of fog water interception by shrubs on the california central coast. J. Coast. Conserv. 20(4), 315–325 (2016). https://doi.org/10.1007/s11852-016-0443-y

    Article  Google Scholar 

  6. R. Ghosh, R.P. Sahu, R. Ganguly, I. Zhitomirsky, I.K. Puri, Photocatalytic activity of electrophoretically deposited TiO2 and ZnO nanoparticles on fog harvesting meshes. Ceram. Int. 46(3), 3777–3785 (2020)

    Google Scholar 

  7. R. Marloth, Results of experiments on table mountain for ascertaining the amount of moisture deposited from the SE clouds. Trans. S. Afr. Phil. Soc. 14(1), 403–408 (2010). https://doi.org/10.1080/21560382.1903.9526032

    Article  Google Scholar 

  8. J.M. Schutte, Die onttrekking van water uit die newellaag en lae wolke by Mariepskop. S.A. department of water affairs. Division. Hydrol. Res. Tech. note. 20, 1–21 (1971)

    Google Scholar 

  9. D. Carrera-Villacrés, J.L.C. Villacrés, T. Braun, Z. Zhao, J. Gómez, J. Quinteros-Carabalí, Fog Harvesting and IoT based environment monitoring system at the Ilalo volcano in Ecuador. Int. J. Adv. Sci. Eng. Inf. Technol. 10(1), 407–412 (2020)

    Google Scholar 

  10. W. Shi T. W. van der Sloot, B. J. Hart, B. S. Kennedy, J. B. Boreyko, , Harps enable water harvesting under light fog conditions. Adv. Sustain. Syst. 4(6), 2000040 (2020)

    Google Scholar 

  11. D.M. Fernandez et al., Fog water collection effectiveness: mesh intercomparisons. Aerosol. Air. Qual. Res. 18(1), 270–283 (2018). https://doi.org/10.4209/aaqr.2017.01.0040

    Article  Google Scholar 

  12. J.K. Domen, W.T. Stringfellow, M.K. Camarillo, S. Gulati, Fog water as an alternative and sustainable water resource. Clean. Technol. Environ. Policy. 16(2), 235–249 (2013). https://doi.org/10.1007/s10098-013-0645-z

    Article  Google Scholar 

  13. C. Schunk et al., Testing water yield, efficiency of different meshes and water quality with a novel fog collector for high wind speeds. Aerosol. Air. Qual Res.. 18(1), 240–253 (2018). https://doi.org/10.4209/aaqr.2016.12.0528

    Article  Google Scholar 

  14. J. d. D. Rivera, , Aerodynamic collection efficiency of fog water collectors. Atmos. Res. 102, 335–342 (2011)

    Google Scholar 

  15. O. Al-Khayat et al., Patterned polymer coatings increase the efficiency of dew harvesting. ACS Appl. Mater. Interfaces 9(15), 13676–13684 (2017). https://doi.org/10.1021/acsami.6b16248

    Article  Google Scholar 

  16. K. Yin et al., A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection. Nanoscale 9(38), 14620–14626 (2017). https://doi.org/10.1039/c7nr05683d

    Article  Google Scholar 

  17. Z. Yu et al., Desert beetle-inspired superwettable patterned surfaces for water harvesting. Small 13(36), 1701403 (2017). https://doi.org/10.1002/smll.201701403

    Article  Google Scholar 

  18. F. Ren et al., A single-layer janus membrane with dual gradient conical micropore arrays for self-driving fog collection. J. Mater. Chem. A. 5(35), 18403–18408 (2017). https://doi.org/10.1039/C7TA04392A

    Article  Google Scholar 

  19. N. Middleton, “Deserts: A Very Short Introduction (Oxford University Press, New York., 2009), pp. 3–20

    Google Scholar 

  20. J. Ju et al., A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012). https://doi.org/10.1038/ncomms2253

    Article  ADS  Google Scholar 

  21. H.G. Andrews, E.A. Eccles, W.C.E. Schofield, J.P.S. Badyal, Three dimensional hierarchical structures for fog harvesting. Langmuir 27(7), 3798–3802 (2011). https://doi.org/10.1021/la2000014

    Article  Google Scholar 

  22. P.S. Brown, B. Bhushan, Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Phil. Trans. R. Soc. A. 374, 20160135 (2016)

    ADS  Google Scholar 

  23. R. Ghosh, C. Patra, P. Singh, R. Ganguly, R.P. Sahu, I. Zhitomirsky, I.K. Puri, Influence of metal mesh wettability on fog harvesting in industrial cooling towers. Appl. Therm. Eng. 181, 115963 (2020)

    Google Scholar 

  24. Y. Hou et al., Tunable water harvesting surfaces consisting of biphilic nanoscale topography. ACS Nano 12(11), 11022–11030 (2018). https://doi.org/10.1021/acsnano.8b05163

    Article  Google Scholar 

  25. X. Wang et al., Water harvesting method via a hybrid superwettable coating with superhydrophobic and superhydrophilic nanoparticles. Appl. Surf. Sci. 465, 986–994 (2019). https://doi.org/10.1016/j.apsusc.2018.09.210

    Article  ADS  Google Scholar 

  26. X. Wang, J. Zeng, X. Yu, Y. Zhang, Superamphiphobic coatings with polymer wrapped particles: enhancing water harvesting. J. Mater. Chem. A. 7(10), 5426–5433 (2019). https://doi.org/10.1039/C8TA12372A

    Article  Google Scholar 

  27. M.T. Masood et al., Highly transparent polyethylcyanoacrylates from approved eco-friendly fragrance materials demonstrating excellent fog-harvesting and anti-wear properties. ACS Appl. Mater. Interfaces 10(40), 34573–34584 (2018). https://doi.org/10.1021/acsami.8b10717

    Article  Google Scholar 

  28. A. Khan et al., Wetting behaviors and applications of metalcatalyzed CVD grown graphene. J. Mater. Chem. A. 6(45), 22437–22464 (2018). https://doi.org/10.1039/c8ta08325h

    Article  Google Scholar 

  29. G.-T. Kim et al., Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. Adv. Mater. 26(30), 5166–5172 (2014). https://doi.org/10.1002/adma.201401149

    Article  Google Scholar 

  30. Y. Wang et al., Directional droplet propulsion on gradient boron nitride nanosheet grid surface lubricated with a vapor film below the leidenfrost temperature. ACS Nano 12(12), 11995–12003 (2018). https://doi.org/10.1021/acsnano.8b04039

    Article  Google Scholar 

  31. C. Andrea, M. Michiel, M. Frieder, Numerical investigation of dynamic effects for sliding drops on wetting defects. Phys. Rev. E 91(2), 023013 (2015). https://doi.org/10.1103/PhysRevE.91.023013

    Article  Google Scholar 

  32. G. Kevin, B. Mathew, J.M. Mabry, T. Anish, Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 9(12), 11212–11223 (2017). https://doi.org/10.1021/acsami.6b15491

    Article  Google Scholar 

  33. S. Zhang et al., Liquid mobility on superwettable surfaces for applications in energy and the environment. J. Mater. Chem. A. 7(1), 38–63 (2019). https://doi.org/10.1039/C8TA09403A

    Article  ADS  Google Scholar 

  34. B.-E. Pinchasik, M. Kappl, H.-J. Butt, Small structures big droplets: the role of nanoscience in fog harvesting. ACS Nano 10(12), 10627–10630 (2016)

    Google Scholar 

  35. M. Gürsoy, All-dry patterning method to fabricate hydrophilic/hydrophobic surface for fog harvesting. Colloid. Polym. Sci. 298, 969–976 (2020)

    Google Scholar 

  36. K. Yin et al., Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting. ACS Appl. Mater. Interfaces 10(37), 31433–31440 (2018). https://doi.org/10.1021/acsami.8b11894

    Article  Google Scholar 

  37. M. Wang et al., Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection. ACS Appl. Mater. Interfaces 9(34), 29248–29254 (2017). https://doi.org/10.1021/acsami.7b08116

    Article  Google Scholar 

  38. Y. Song et al., Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport. Nanoscale. 10(8), 3813–3822 (2018). https://doi.org/10.1039/c7nr07728a

    Article  Google Scholar 

  39. Y. Song et al., A bioinspired structured graphene surface with tunable wetting and high wearable properties for efficient fog collection. Nanoscale. 10(34), 16127–16137 (2018). https://doi.org/10.1039/c8nr04109a

    Article  Google Scholar 

  40. W. Shi et al., Fog harvesting with harps. ACS Appl. Mater. Interfaces 10(14), 11979–11986 (2018). https://doi.org/10.1021/acsami.7b17488

    Article  Google Scholar 

  41. H. Cho et al., A large-scale water-harvesting device with b-Al(OH)3 microcone arrays by simple hydrothermal synthesis. J. Mater. Chem. A. 5(48), 25328–25337 (2017). https://doi.org/10.1039/c7ta06874c

    Article  Google Scholar 

  42. T. Neha, S.R. Anupama, A. Komal, B. Avinash, Electrospun bead-on-string hierarchical fibers for fog harvesting application. Macromol. Mater. Eng. 302(7), 1700124 (2017). https://doi.org/10.1002/mame.201700124

    Article  Google Scholar 

  43. A. Almasian, Gh. Chizari Fard, M. Mirjalili, M. Parvinzadeh Gashti, Fluorinated-PAN nanofibers: preparation, optimization, characterization and fog harvesting property. J. Ind. Eng. Chem. 62, 146–155 (2018). https://doi.org/10.1016/j.jiec.2017.12.052

    Article  Google Scholar 

  44. M. Cao et al., Hydrophobic/hydrophilic cooperative janus system for enhancement of fog collection. Small. 11(34), 4379–4384 (2015). https://doi.org/10.1002/smll.201500647

    Article  Google Scholar 

  45. L. Zhong, J. Feng, Z. Guo, An alternating nanoscale (hydrophilic-hydrophobic)/hydrophilic janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. J. Mater. Chem. A. 7(14), 8405–8413 (2019)

    Google Scholar 

  46. M. Liang et al., Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity. Nanoscale. 9(42), 16214–16222 (2017)

    Google Scholar 

  47. J. Ju et al., Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Adv. Funct. Mater. 24(44), 6933–6938 (2014)

    Google Scholar 

  48. S.J. Lee, N. Ha, H. Kim, Superhydrophilic−superhydrophobic water harvester inspired by wetting property of cactus stem. ACS Sustain. Chem. Eng. 7(12), 10561–10569 (2019)

    Google Scholar 

  49. F.T. Malik et al., Dew harvesting efficiency of four species of cacti. Bioinspir. Biomim. 10(3), 1–16 (2015)

    Google Scholar 

  50. X. Heng, M. Xiang, Z. Lu, C. Luo, Branched ZnO wire structures for water collection inspired by Cacti. ACS Appl. Mater. Interfaces 6(11), 8032–8041 (2014)

    Google Scholar 

  51. M. Cao et al., Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater. 24(21), 3235–3240 (2014)

    Google Scholar 

  52. Y. Peng et al., Magnetically induced fog harvesting via flexible conical arrays. Adv. Funct. Mater. 25(37), 5967–5971 (2015)

    Google Scholar 

  53. F.T. Malik et al., Nature’s moisture harvesters: a comparative review. Bioinspir. Biomim. 9(3), 031002 (2014)

    ADS  Google Scholar 

  54. J. Guadarrama-Cetina et al., Dew condensation on desert beetle skin. Eur. Phys. J. E. 37(11), 109 (2014)

    Google Scholar 

  55. Y. Wu, Bionic PDMS film with hybrid superhydrophilic/superhydrophobic arrays for water harvest. Surf. Innov. 6(3), 141–149 (2018)

    Google Scholar 

  56. J.K. Park, S. Kim, Three-dimensionally structured flexible fog harvesting surfaces inspired by namib desert beetles. Micromachines 10(3), 201 (2019)

    Google Scholar 

  57. R.P. Garrod et al., Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir 23(2), 689–693 (2007)

    Google Scholar 

  58. A.P. Romario, A.S. Amanda, J.T.A. Vladimir, J.C. Evaldo, Water vapor condensation and collection by super-hydrophilic and superhydrophobic VACNTs. Diam. Relat. Mater. 87, 43–49 (2018)

    Google Scholar 

  59. N.K. Kim, D.H. Kang, H. Eom, H.W. Kang, Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Appl. Surf. Sci. 470, 161–167 (2019)

    ADS  Google Scholar 

  60. H. Liu et al., Constructing hierarchically hydrophilic/superhydrophobic zif-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chem. Eng. J. 369, 1040–1048 (2019)

    Google Scholar 

  61. L. Zhong, H. Zhu, Y. Wu, Z. Guo, Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges. J. Colloid Interface Sci. 525, 234–242 (2018)

    ADS  Google Scholar 

  62. Y. Wang et al., A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting. J. Mater. Chem. A. 3(37), 18963–18969 (2015)

    Google Scholar 

  63. B. White, A. Sarkar, A.-M. Kietzig, Fog-harvesting inspired by the stenocara beetle—an analysis of drop collection and removal from biomimetic samples with wetting contrast. Appl. Surf. Sci. 284, 826–836 (2013)

    ADS  Google Scholar 

  64. S. Wang et al., Bioinspired hierarchical copper oxide surfaces for rapid dropwise condensation. J. Mater. Chem. A. 5(40), 21422–21428 (2017)

    Google Scholar 

  65. Y. Lu et al., Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection. RSC Adv. 7(18), 11170–11179 (2017)

    ADS  Google Scholar 

  66. L. Zhong et al., Efficient fog harvesting based on 1d copper wire inspired by the plant pitaya. Langmuir 34(50), 15259–15267 (2018)

    Google Scholar 

  67. H.G. Andrews, E.A. Eccles, W.C.E. Schofield, J.P.S. Badyal, Three-dimensional hierarchical structures for fog harvesting. Langmuir 27(7), 3798–3802 (2011)

    Google Scholar 

  68. M. Gürsoy et al., Bioinspired asymmetric-anisotropic (directional) fog harvesting based on the arid climate plant Eremopyrum orientale. Colloids. Surf. Physicochem. Eng. Asp. 529, 959–965 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.065

    Article  Google Scholar 

  69. M. Gürsoy et al., Bioinspired fog capture and channel mechanism based on the arid climate plant Salsola crassa. Colloids Surf. Physicochem. Eng. Asp. 529, 195–202 (2017)

    Google Scholar 

  70. V. Sharma et al., Gladiolus dalenii based bioinspired structured surface via soft lithography and its application in water vapor condensation and fog harvesting. ACS Sustain. Chem. Eng. 6(5), 6981–6993 (2018)

    Google Scholar 

  71. M. Ebner, T. Miranda, A. Roth-Nebelsick, Efficient fog harvesting by stipagrostis sabulicola (namib dune bushman grass). J. Arid Environ. 75(6), 524–531 (2011)

    ADS  Google Scholar 

  72. C. Song et al., Bioinspired wet-assembly fibers: from nanofragments to microhumps on string in mist. J. Mater. Chem. A. 2(25), 9465–9468 (2014)

    Google Scholar 

  73. P. Comanns et al., Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2, 204–214 (2011)

    Google Scholar 

  74. H. Xie, H.X. Huang, H.Y. Mi, Gradient wetting state for droplet transportation and efficient fog harvest on nanopillared cicada wing surface. Mater. Lett. 221, 123–127 (2018)

    Google Scholar 

  75. P. Kyoo-Chul et al., Condensation on slippery asymmetric bumps. Nature 531(7592), 78–82 (2016)

    ADS  Google Scholar 

  76. D. Li et al., A hybrid bioinspired fiber trichome with special wettability for water collection, friction reduction and self-cleaning. Nanoscale 11(24), 11774–11781 (2019)

    Google Scholar 

  77. Y. Wang et al., Biomimetic water-collecting fabric with light-induced superhydrophilic bumps. ACS Appl. Mater. Interfaces 8(5), 2950–2960 (2016)

    Google Scholar 

  78. C. Li et al., Fog harvesting of a bioinspired nanocone-decorated 3D fiber network. ACS Appl. Mater. Interfaces 11(4), 4507–4513 (2019)

    Google Scholar 

  79. H. Zhu et al., Prewetting dichloromethane induced aqueous solution adhered on cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by namib desert beetles and mussels. Nanoscale 10(27), 13045–13054 (2018)

    Google Scholar 

  80. O. Klemm, R.S. Schemenauer, A. Lummerich et al., Fog as a fresh-water resource: overview and perspectives. Ambio 41, 221–234 (2012)

    Google Scholar 

  81. L. Zhang et al., Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. J. Mater. Chem. A. 3(6), 2844–2852 (2015)

    Google Scholar 

  82. B. Alison, B. François, S. Alban, A.S. Howard, Tunable transport of drops on a vibrating inclined fiber. Appl. Phys. Lett. 107(18), 181604 (2015)

    Google Scholar 

  83. J.B. Brzoska, F. Brochard-Wyart, F. Rondelez, Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9(8), 2220–2224 (1993)

    Google Scholar 

  84. H. Sabrina, B. Oliver, J. Karin, Capillary droplet propulsion on a fibre. Soft Matter 11(35), 6921–6926 (2015)

    Google Scholar 

  85. N.J. Cira, A. Benusiglio, M. Prakash, Vapour-mediated sensing and motility in two-component droplets. Nature 519(7544), 446–450 (2015)

    ADS  Google Scholar 

  86. J. Ju, K. Xiao, X. Yao, H. Bai, L. Jiang, Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv. Mater. 25(41), 5937–5942 (2013)

    Google Scholar 

  87. H.K. Raut, A.S. Ranganath, A. Baji, K.L. Wood, Bio-inspired hierarchical topography for texture driven fog harvesting. Appl. Surf. Sci. 465, 362–368 (2019)

    ADS  Google Scholar 

  88. H. Bai et al., A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability. J. Mater. Chem. A. 6(42), 20966–20972 (2018)

    Google Scholar 

  89. D. Chen et al., Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. J. Colloid Interface Sci. 530, 274–281 (2018)

    ADS  Google Scholar 

  90. T. Xu, Y. Lin, M. Zhang, W. Shi, Y. Zheng, High-efficiency fog collector: water unidirectional transport on heterogeneous rough conical wires. ACS Nano 10(12), 10681–10688 (2016)

    Google Scholar 

  91. B.T.W. Ang, C.H. Yap, W.S.V. Lee, J. Xue, Bioinspired dual-tier coalescence for water-collection efficiencyenhancement. Langmuir 34(44), 13409–13415 (2018)

    Google Scholar 

  92. D. Maher, V. Kripa K, , Electrostatically driven fog collection using space charge injection. Sci. Adv. 4(6), 5323 (2018)

    Google Scholar 

  93. M.-G. Medici, A. Mongruel, L. Royon, D. Beysens, Edge effects on water droplet condensation. Phy. Rev E. 90(6), 062403 (2014)

    ADS  Google Scholar 

  94. D.E. Azzi, M.E. Beyrouthy, How emerging technologies and biomimicry can help solving water problems: desert case studies. Adv. Crop Sci. Technol. 3(4), 3–4 (2015)

    Google Scholar 

  95. J.F. Maestre-Valero et al., Comparative analysis of two polyethylene foil materials for dew harvesting in a semi-arid climate. J. Hydrol. 410(1–2), 84–91 (2011)

    ADS  Google Scholar 

  96. D. Leslie L and B. Jamila, , Harvesting fresh water from fog in rural Morocco: research and impact dar Si hmad’s fogwater project in aït baamrane. Procedia Eng. 107, 186–193 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is in part supported by the Fundamental Research Funds for the Central Universities (B200202216) and in part supported by Innovation Foundation of Radiation Application, China Institute of Atomic Energy (KFZC2020010401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Wang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Song, Y., Zhang, B. et al. Bioinspired micro- and nanostructures used for fog harvesting. Appl. Phys. A 127, 461 (2021). https://doi.org/10.1007/s00339-021-04619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04619-1

Keywords

Navigation