Skip to main content
Log in

Influences of oxygen on the magnetocaloric properties of a Fe-based amorphous alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the Fe80P13C7 amorphous alloys containing a different amount of 53, 180, 241 and 270 at. ppm oxygen were synthesized and their magnetocaloric effect (MCE) was investigated. It was found that doping of oxygen can effectively regulate the Curie temperature (TC), magnetic entropy change (- ∆SM) and refrigerant capacity (RCFWHM) of alloys. Especially, with 241 ppm oxygen doping, the alloy showed TC of 597 K, - ∆SM of 2.47 J kg−1 k−1 and RCFWHM of 103.96 J kg−1 under 1.5 T, which were larger than that of most Fe-based amorphous alloys reported to date. The result from X-ray photoelectron spectroscopy confirmed that appropriate oxygen doping tends to translate interatomic bonds from p-d hybrid into Fe-Fe bonds, supporting the large TC and MCE. Our finding elucidates a new understanding of the role of oxygen in magnetic performance and may open up a new possible pathway for improving the MCE of Fe-based amorphous alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)

    Article  Google Scholar 

  2. A. Smith, C.R.H. Bahl, R. Bjãrk, K. Engelbrecht, K.K. Nielsen, N. Pryds, Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012)

    Article  Google Scholar 

  3. K.A. Gschneidnerjr, V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Rrog. Phys. 68, 1479–1539 (2005)

    Article  ADS  Google Scholar 

  4. V. Franco, J.S. Blazquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. ChemInform 44, 305–342 (2013)

    Article  Google Scholar 

  5. V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). Appl. Phys. Lett. 78, 4494–4497 (1997)

    Article  Google Scholar 

  6. X.B. Liu, Z. Altounian, Effect of Co content on magnetic entropy change and structure of La(Fe1 − xCox)11.4Si1.6. J. Magn. Magn. Mater. 264, 209–213 (2003)

    Article  ADS  Google Scholar 

  7. P. Gębara, P. Pawlik, Broadening of temperature working range in magnetocaloric La(Fe Co, Si)13-based multicomposite. J. Magn. Magn. Mater. 442, 145–151 (2017)

    Article  ADS  Google Scholar 

  8. R. Caballero-Flores, V. Franco, A. Conde, K. Knipling, M. Willard, Influence of Co and Ni addition on the magnetocaloric effect in Fe88–2xCoxNixZr7B4Cu1 soft magnetic amorphous alloys. Appl. Phys. Lett. 96, 182506 (2010)

    Article  ADS  Google Scholar 

  9. S.J. Pang, T. Zhang, K. Asami, A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Mater. 50, 489–497 (2002)

    Article  ADS  Google Scholar 

  10. W.M. Yang, H.S. Liu, Y.C. Zhao, A. Inoue, K. Jiang, J.T. Huo, H. Ling, Q. Li, B.L. Shen, Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Sci. Rep. 4, 6233–6239 (2014)

    Article  ADS  Google Scholar 

  11. J.W. Li, J.Y. Law, H.R. Ma, A.N. He, Q.K. Man, H. Men, J.T. Huo, C.T. Chang, X.M. Wang, R.W. Li, Magnetocaloric effect in Fe–Tm–B–Nb metallic glasses near room temperature. J. Non-Cryst. Solids 425, 114–117 (2015)

    Article  ADS  Google Scholar 

  12. F. Hu, Q. Luo, B.L. Shen, Thermal, magnetic and magnetocaloric properties of FeErNbB metallic glasses with high glass-forming ability. J. Non-Cryst. Solids 512, 184–188 (2019)

    Article  ADS  Google Scholar 

  13. A. Waske, B. Schwarz, N. Mattern, J. Eckert, Magnetocaloric (Fe-B)-based amorphous alloys. J. Magn. Magn. Mater. 329, 101–104 (2013)

    Article  ADS  Google Scholar 

  14. D.A. Shishkin, A.S. Volegov, N.V. Baranov, The thermomechanical stability of Fe-based amorphous ribbons exhibiting magnetocaloric effect. Appl. Phys. A 122, 1002–1007 (2016)

    Article  ADS  Google Scholar 

  15. Y.Y. Wang, K. Hou, X.F. Bi, Hydrogenated Fe90M10 (M: Zr and Sc) amorphous alloys with enhanced room-temperature magnetocaloric effect. J. Alloys Compd. 689, 564–569 (2016)

    Article  Google Scholar 

  16. J.W. Li, J.Y. Law, J.T. Huo, A.N. He, Q.K. Man, C.T. Chang, H. Men, J.Q. Wang, X.M. Wang, R.W. Li, Magnetocaloric effect of Fe-RE-B-Nb (RE = Tb, Ho or Tm) bulk metallic glasses with high glass-forming ability. J. Alloys Compd. 644, 346–349 (2015)

    Article  Google Scholar 

  17. A. Kupczyk, J. Swierczek, M. Hasiak, K. Prusik, J. Zbroszczyk, P. Gębara, Microstructure and some thermomagnetic properties of amorphous Fe-(Co)-Mn-Mo-B alloys. J. Alloys Compd. 735, 253–260 (2018)

    Article  Google Scholar 

  18. H.Y. Zhang, R. Li, T. Xu, F.M. Liu, T. Zhang, Near room-temperature magnetocaloric effect in FeMnPBC metallic glasses with tunable Curie temperature. J. Magn. Magn. Mater. 347, 131–135 (2013)

    Article  ADS  Google Scholar 

  19. G.F. Wang, H.L. Li, Z.R. Zhao, X.F. Zhang, Stable magnetocaloric effect and refrigeration capacity in Co-doped FeCoMnZrNbB amorphous ribbons near room temperature. J. Alloys Compd. 692, 793–796 (2016)

    Article  Google Scholar 

  20. P. Gębara, M. Hasiak, Investigation of critical behavior in the vicinity of ferromagnetic to paramagnetic phase transition in the Fe75Mo8Cu1B16 alloy. J. Appl. Phys. 124, 083904 (2018)

    Article  ADS  Google Scholar 

  21. A. Łukiewska, J. Olszewskia, M. Hasiakb, P. Gębara, Magnetocaloric effect in amorphous and partially crystallized Fe80Zr7Cr6Nb2Cu1B4 alloy. Acta Phys. Pol. A 133, 676–679 (2018)

    Article  ADS  Google Scholar 

  22. Y.Y. Wang, X.F. Bi, The role of Zr and B in room temperature magnetic entropy change of FeZrB amorphous alloys. Appl. Phys. Lett. 95, 262501 (2009)

    Article  ADS  Google Scholar 

  23. Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018)

    Article  ADS  Google Scholar 

  24. W.M. Yang, J. Huo, H.S. Liu, J.W. Li, L.J. Song, Q. Li, L. Xue, B.L. Shen, A. Inoue, Extraordinary magnetocaloric effect of Fe-based bulk glassy rods by combining fluxing treatment and J-quenching technique. J. Alloys Compd. 684, 29–33 (2016)

    Article  Google Scholar 

  25. C. Liu, Q. Li, J.T. Huo, L. Xie, W.M. Yang, C.T. Chang, Y.F. Sun, Effect of preparation cooling rate on magnetocaloric effect of Fe80P13C7 amorphous alloy. J. Magn. Magn. Mater. 475, 249–256 (2019)

    Article  ADS  Google Scholar 

  26. H.X. Li, J.E. Gao, Z.B. Jiao, Y. Wu, Z.P. Lu, Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Appl. Phys. Lett. 95, 161905 (2009)

    Article  ADS  Google Scholar 

  27. C.T. Chang, J.H. Zhang, B.L. Shen, W.H. Wang, A. Inoue, Pronounced enhancement of glass-forming ability of Fe–Si–B–P bulk metallic glass in oxygen atmosphere. J. Mater. Res. 29, 1217–1222 (2014)

    Article  ADS  Google Scholar 

  28. J. Pang, K.Q. Qiu, C.J. Wang, D.P. Wang, A.D. Wang, C.T. Chang, X.M. Wang, C.T. Liu, Oxidation and refreshing behaviors of P-containing Fe-based amorphous ribbons. J. Non-Crystal. Solids 471, 137–141 (2017)

    Article  ADS  Google Scholar 

  29. X.D. Fan, H. Men, A.B. Ma, B.L. Shen, Soft magnetic properties in Fe84-xB10C6Cux nanocrystalline alloys. J. Magn. Magn. Mater. 326, 22–27 (2013)

    Article  ADS  Google Scholar 

  30. R. O’handley, Physics of ferromagnetic amorphous alloys. J. Appl. Phys. 62, 15–49 (1987)

    Article  ADS  Google Scholar 

  31. H.B. Ling, Q. Li, H.X. Li, J.J. Zhang, C.T. Chang, S. Yi, Preparation and characterization of quaternary magnetic Fe80-xCoxP14B6 bulk metallic glasses. J. Appl. Phys. 115, 330–332 (2014)

    Article  Google Scholar 

  32. M.Q. Zuo, S.Y. Meng, Q. Li, H.X. Li, C.T. Chang, Y.F. Sun, Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses. Intermetallics 83, 83–86 (2017)

    Article  Google Scholar 

  33. C.M. Pang, L. Chen, H. Xu, W. Guo, Z.W. Lv, J.T. Huo, M.J. Cai, B.L. Shen, X.L. Wang, C.C. Yuan, Effect of Dy, Ho, and Er substitution on the magnetocaloric properties of Gd–Co–Al–Y high entropy bulk metallic glasses. J. Alloys Compd. 827, 154101 (2020)

    Article  Google Scholar 

  34. T. Hashimoto, T. Numasawa, M. Shino, T. Okada, Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants. Cryogenics 21, 647–653 (1981)

    Article  ADS  Google Scholar 

  35. M.E. Wood, W.H. Potter, General analysis of magnetic refrigeration and its optimization using a new concept: Maximization of refrigerant capacity. Cryogenics 25, 667–683 (1985)

    Article  ADS  Google Scholar 

  36. P. Gebara, M. Hasiak, Determination of phase transition and critical behavior of the as-cast GdGeSi-(x) type alloys (where x = Ni, Nd and Pr). Materials 14, 185–197 (2021)

    Article  ADS  Google Scholar 

  37. I. Chihi, M. Baazaoui, S. Mahjoub, W. Cheikhrouhou-Koubaa, M. Oumezzine, K. Farah, Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La0.6Ba0.2Sr0.2Mn1−xFexO3. Appl. Phys. A 125, 627–634 (2019)

    Article  ADS  Google Scholar 

  38. P. Gębara, Á. Díaz-García, J.Y. Law, V. Franco, Magnetocaloric response of binary Gd–Pd and ternary Gd-(Mn, Pd) alloys. J. Magn. Magn. Mater. 500, 166175 (2020)

    Article  Google Scholar 

  39. A. Kaal, O.E. Marrakechi, S. Sayouri, M. Tlemçani, H. Lassri, M. Kellati, Magnetic exchange coupling in amorphous Fe82-xHoxB18 alloys. Phys. B 325, 98–105 (2003)

    Article  ADS  Google Scholar 

  40. H. Chen, S.X. Zhou, B.S. Dong, J.J. Jin, T.Q. Liu, P.F. Guan, A general rule for transition metals doping on magnetic properties of Fe-based metallic glasses. J. Alloys Compd. 819, 153062 (2020)

    Article  Google Scholar 

  41. S. Das, K. Choudhary, A. Chernatynskiy, H.C. Yim, A.K. Bandyopadhyay, S. Mukherjee, Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses. J. Phys. Condens. Matter 28, 216003 (2016)

    Article  ADS  Google Scholar 

  42. P. Oelhafen, E. Hauser, H.J. Güntherodt, K.H. Bennemann, New type of d-band-metal alloys: the valence-band structure of the metallic glasses Pd–Zr and Cu–Zr. Phys. Rev. Lett. 43, 1134–1137 (1979)

    Article  ADS  Google Scholar 

  43. H.X. Li, C.Q. Li, D. Cao, W.M. Yang, Q. Li, Z.P. Lu, Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass. Scripta Mater. 135, 24–28 (2017)

    Article  Google Scholar 

  44. C.C. Yuan, J.F. Xiang, X.K. Xi, W.H. Wang, NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses. Phys. Rev. Lett. 107, 236403 (2011)

    Article  ADS  Google Scholar 

  45. S.X. Zhou, B.S. Dong, J.Y. Qin, D.R. Li, S.P. Pan, X.F. Bian, Z.B. Li, The relationship between the stability of glass-forming Fe-based liquid alloys and the metalloid-centered clusters. J. Appl. Phys. 112, 023514 (2012)

    Article  ADS  Google Scholar 

  46. X.M. Xue, H.G. Jiang, Z.T. Sui, B.Z. Ding, Z.Q. Hu, Influence of phosphorus addition on the surface tension of liquid iron and segregation of phosphorus on the surface of Fe–P alloy. Metal. Mater. Tran. B 27, 71–79 (1996)

    Article  Google Scholar 

  47. Q. Luo, B. Schwarz, N. Mattern, J. Shen, J. Eckert, Roles of hydrogenation, annealing and field in the structure and magnetic entropy change of Tb-based bulk metallic glasses. AIP Adv. 3, 032134 (2013)

    Article  ADS  Google Scholar 

  48. P. Yu, J.Z. Zhang, L. Xia, Fe87Zr7B4Co2 amorphous alloy with excellent magneto-caloric effect near room temperature. Intermetallics 95, 85–88 (2018)

    Article  Google Scholar 

  49. V. Franco, A. Conde, L.F. Kiss, Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott–Noakes equation of state. J. Appl. Phys. 104, 033903 (2008)

    Article  ADS  Google Scholar 

  50. J.Y. Law, R.V. Ramanujan, V. Franco, Tunable curie temperatures in Gd alloyed Fe-B-Cr magnetocaloric materials. J. Alloys Compd. 508, 14–19 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Natural Science Research Project of Anhui Province (Grant No. KJ2020A0225), the Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Grant No. GFST2020KF05) and the Youth Foundation of Anhui University of Technology (Grant No. QZ202004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Hou or Shuangshuang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Xiang, X., Huang, Y. et al. Influences of oxygen on the magnetocaloric properties of a Fe-based amorphous alloy. Appl. Phys. A 127, 501 (2021). https://doi.org/10.1007/s00339-021-04659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04659-7

Keywords

Navigation