Skip to main content
Log in

20 nm GAA-GaN/Al2O3 nanowire MOSFET for improved analog/linearity performance metrics and suppressed distortion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work investigates the suppressed distortion and improved analog/linearity performance metrics of gate all around (GAA) Gallium Nitride (GaN)/Al2O3 Nanowire (NW) n-channel MOSFET (GaNNW/Al2O3 MOSFET) at room temperature (300 K). The results show high switching ratio (≈ 109) with low subthreshold swing (67 mV/decade), high QF value (4.1 μS-decade/mV) of GaNNW/Al2O3-MOSFET in comparison to GaNNW/SiO2 and SiNW MOSFET for Vds = 0.4 V due to the lower permittivity of GaN and more effective mass of the electron. Furthermore, linearity and distortion performance is also examined by numerically calculating transconductance and its higher derivatives (gm2 and gm3); voltage and current intercept point (VIP2, VIP3 and IIP3); 1-dB compression point; Harmonics distortions (HD2 and HD3) and IMD3. All these parameters show high linearity and low distortion at zero crossover point (where gm3 = 0) in GaNNW/Al2O3 MOSFET. Thus, GaNNW MOSFET can be considered as a promising candidate for low power high-performance applications. In addition, effect of ambient temperature (250 K–450 K) on the performance of GaNNW/Al2O3 is studied and discussed in terms of the above mentioned metrics. It is very well exhibited that SS, Ion, Vth, and QF improved when the temperature is lowered which makes it suitable for low-temperature environments. But, linearity degrades as the temperature lowers down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.-P. Colinge, FinFETs and Other Multi-Gate Transistors (Springer, Berlin, 2008)

    Book  Google Scholar 

  2. N. Gupta, A. Vohra, R. Chaujar, Linearity performance of gate metal engineered (GME) omega gate-silicon nanowire MOSFET: a TCAD study, in 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2016), pp. 208–211

  3. A. Kumar, M. Tripathi, R. Chaujar, Reliability issues of In 2 O 5 Sn gate electrode recessed channel MOSFET: impact of interface trap charges and temperature. IEEE Trans. Electron Devices 65(3), 860–866 (2018)

    Article  ADS  Google Scholar 

  4. P. Fiorenza, F. Giannazzo, F. Roccaforte, Characterization of SiO2/4H-SiC interfaces in 4H-SiC MOSFETs: a review. Energies 12(12), 2310 (2019)

    Article  Google Scholar 

  5. F. Lindelöw, N.S. Garigapati, L. Södergren, M. Borg, E. Lind, III–V nanowire MOSFETs with novel self-limiting Λ-ridge spacers for RF applications. Semicond. Sci. Technol. 35(6), 065015 (2020)

    Article  ADS  Google Scholar 

  6. M. Afzaal, P. O’Brien, Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J. Mater. Chem. 16(17), 1597–1602 (2006)

    Article  Google Scholar 

  7. J.-O. Joswig, M. Springborg, G. Seifert, Structural and electronic properties of cadmium sulfide clusters. J. Phys. Chem. B 104(12), 2617–2622 (2000)

    Article  Google Scholar 

  8. S. Chaudhury, S.K. Sinha, Carbon nanotube and nanowires for future semiconductor devices applications, in Nanoelectronics (Elsevier, 2019), pp. 375–398

  9. A. Pan, X. Zhu, Optoelectronic properties of semiconductor nanowires, in Semiconductor Nanowires (Elsevier, 2015), pp. 327–363

  10. G. Tian et al., Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. J. Mater. Chem. A 7(26), 15640–15653 (2019)

    Article  Google Scholar 

  11. U. Bhandari, B.A. Ayirizia, Y. Malozovsky, L. Franklin, D. Bagayoko, First principle investigation of electronic, transport, and bulk properties of zinc-blende magnesium sulfide. Electronics 9(11), 1791 (2020)

    Article  Google Scholar 

  12. R. Chu, Y. Cao, M. Chen, R. Li, D. Zehnder, An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett. 37(3), 269–271 (2016)

    Article  ADS  Google Scholar 

  13. M.F. Fatahilah et al., Top-down GaN nanowire transistors with nearly zero gate hysteresis for parallel vertical electronics. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  14. E.A. Jones, F.F. Wang, D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 707–719 (2016)

    Article  Google Scholar 

  15. R. Dylewicz, S.Z. Patela, R. Paszkiewicz, Applications of GaN-based materials in modern optoelectronics, in Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments II, vol. 5484, (International Society for Optics and Photonics, 2004), pp. 328–335

  16. R. Huang, R. Wang, M. Li, Gate-all-around silicon nanowire transistor technology, in Women in Microelectronics (Springer, 2020), pp. 89–115

  17. T. Mikolajick, W.M. Weber, Silicon nanowires: fabrication and applications, in Anisotropic Nanomaterials (Springer, 2015), pp. 1–25

  18. N. Chowdhury, G. Iannaccone, G. Fiori, D.A. Antoniadis, T. Palacios, GaN nanowire n-MOSFET with 5 nm channel length for applications in digital electronics. IEEE Electron Device Lett. 38(7), 859–862 (2017)

    Article  ADS  Google Scholar 

  19. I. Arin, J.A. Akhi, S.T. Azam, A.K. Ajad, GaN-based double gate-junctionless (DG-JL) MOSFET for low power switching applications, in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (IEEE, 2019), pp. 1–4

  20. P.M. Tripathi, H. Soni, R. Chaujar, A. Kumar, Numerical simulation and parametric assessment of GaN buffered trench gate MOSFET for low power applications. IET Circuits Devices Syst. 14(6), 915–922 (2020)

    Article  Google Scholar 

  21. D.-H. Son et al., Low voltage operation of GaN vertical nanowire MOSFET. Solid-State Electron. 145, 1–7 (2018)

    Article  ADS  Google Scholar 

  22. Y. Jia, J.S. Wallace, E. Echeverria, J.A. Gardella Jr., U. Singisetti, Interface characterization of atomic layer deposited Al2O3 on m-plane GaN. Physica Status Solidi (b) 254(8), 1600681 (2017)

    Article  ADS  Google Scholar 

  23. T. Thingujam, D.-H. Son, J.-G. Kim, S. Cristoloveanu, J.-H. Lee, Effects of interface traps and self-heating on the performance of GAA GaN vertical nanowire MOSFET. IEEE Trans. Electron Devices 67(3), 816–821 (2020)

    Article  ADS  Google Scholar 

  24. C. Dimri, G. Nikhil, P. Mohanty, K. Pradhan, R. Agarwal, S. Routray, Investigating single event transients of advanced fin based devices for inclusion in ICs. AEU Int. J. Electron. 153675 (2021)

  25. Z. Prijić, S. Dimitrijev, N. Stojadinović, The determination of zero temperature coefficient point in CMOS transistors. Microelectron. Reliab. 32(6), 769–773 (1992)

    Article  Google Scholar 

  26. P. Toledo, H. Klimach, D. Cordova, S. Bampi, E. Fabris, CMOS transconductor analysis for low temperature sensitivity based on ZTC MOSFET condition, in Proceedings of the 28th Symposium on Integrated Circuits and Systems Design (2015), pp. 1–7

  27. D.-S. Jeon, D.E. Burk, A temperature-dependent SOI MOSFET model for high-temperature application (27 degrees C-300 degrees C). IEEE Trans. Electron Devices 38(9), 2101–2111 (1991)

    Article  ADS  Google Scholar 

  28. A. Kumar, N. Gupta, S.K. Tripathi, M. Tripathi, R. Chaujar, Performance evaluation of linearity and intermodulation distortion of nanoscale GaN-SOI FinFET for RFIC design. AEU Int. J. Electron. Commun. 115, 153052 (2019)

    Article  Google Scholar 

  29. N. Gupta, A. Kumar, Numerical assessment of high-k spacer on symmetric S/D underlap GAA junctionless accumulation mode silicon nanowire MOSFET for RFIC design. Appl. Phys. A 127(1), 1–8 (2021)

    Article  Google Scholar 

  30. D.J. Carter, J.D. Gale, B. Delley, C. Stampfl, Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles. Phys. Rev. B 77(11), 115349 (2008)

    Article  ADS  Google Scholar 

  31. G. Doornbos, M. Passlack, Benchmarking of III–V n-MOSFET maturity and feasibility for future CMOS. IEEE Electron Device Lett. 31(10), 1110–1112 (2010)

    Article  ADS  Google Scholar 

  32. N. Gupta, R. Chaujar, Optimization of high-k and gate metal workfunction for improved analog and intermodulation performance of Gate Stack (GS)-GEWE-SiNW MOSFET. Superlattices Microstruct. 97, 630–641 (2016)

    Article  ADS  Google Scholar 

  33. A. Kumar, Effect of trench depth and gate length shrinking assessment on the analog and linearity performance of TGRC-MOSFET. Superlattices Microstruct. 109, 626–640 (2017)

    Article  ADS  Google Scholar 

  34. N. Gupta, R. Chaujar, Investigation of temperature variations on analog/RF and linearity performance of stacked gate GEWE-SiNW MOSFET for improved device reliability. Microelectron. Reliab. 64, 235–241 (2016)

    Article  Google Scholar 

  35. R. Saha, B. Bhowmick, S. Baishya, Temperature effect on RF/analog and linearity parameters in DMG FinFET. Appl. Phys. A 124(9), 642 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to MER Lab DTU, JIIT, and ASH department (ADGITM) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aditya Jain or Ajay Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Jain, A. & Kumar, A. 20 nm GAA-GaN/Al2O3 nanowire MOSFET for improved analog/linearity performance metrics and suppressed distortion. Appl. Phys. A 127, 530 (2021). https://doi.org/10.1007/s00339-021-04673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04673-9

Keywords

Navigation