Skip to main content
Log in

Comparative study between CeO2/Zno and CeO2/SiO2 nanocomposites for (Cr6+) heavy metal removal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, nanocomposites of CeO2/ZnO and CeO2/SiO2 were prepared to be used as adsorbing materials for the Cr (VI) heavy metal from water. According to the non-toxic and low-cost properties of zinc oxide and silica, they have been prepared as a nanocomposite with anti-oxidant cerium oxide. The prepared CeO2/SiO2 nanocomposite showed larger removal efficiency for Cr (VI) from aqueous solution of (55%) at optimum conditions of pH = 7 after 100 min. The adsorption kinetics for Cr (VI) on surface of CeO2/Zno and CeO2/SiO2 were well fitted with pseudo-second-order kinetic model. The adsorption mechanism follows monolayer Langmuir isotherm model. The prepared samples were investigated and characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-spectroscopy, field emission scanning electron microscopy (FESEM) and N2 adsorption–desorption isotherm (BET) isotherm. The efficiency of the prepared samples for removing of Cr (VI) from aqueous solution was investigated in different experimental conditions (different PH and contact time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Bhattacharya, D. Parasar, B. Mondal et al., Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals. Sci. Rep. 5, 17072 (2015)

    ADS  Google Scholar 

  2. O. Olanipekun, A. Oyefusi, G.M. Neelgunf, A. Oki, Adsorption of lead over graphite oxide. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 118, 857–860 (2014)

    ADS  Google Scholar 

  3. Moazeni M, Ebrahimi A, Rafiei N, Pourzamani HR (2016) Removal of lead ions from aqueous solution by nano zero-valent iron (nZVI). Heath Scope

  4. M. Manjuladevi, S.M. Oviyaa, Heavy metal removal from industrial wastewater by nano adsorbent prepared from cucumis melopeel activated carbon. J. Nanomed. Res. 5(1), 00102 (2017)

    Google Scholar 

  5. D.K. Yadav, S. Srivastava, Carbon nanotubes as adsorbent to remove heavy metal ion (Mn+7) in wastewater treatment. Mater. Today 4, 4089–4094 (2017)

    Google Scholar 

  6. L.Z. Lee, M.A.A. Zaini, S.H. Tang, Porous Nanomaterials for Heavy Metal Removal Handbook of Ecomaterials (Springer, Cham, 2019)

    Google Scholar 

  7. A.B. Albadarin, C. Mangwandi, G.M. Walker et al., Influence of solution chemistry on Cr(VI) reduction and complexation onto date-pits/tea-waste biomaterials. J. Environ. Manage. 114, 190–201 (2013)

    Google Scholar 

  8. S. Recillas, J. Colón, E. Casals et al., Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J. Hazard. Mater. 184, 425–431 (2010)

    Google Scholar 

  9. H.B. Zeng, W.P. Cai, P.S. Liu, X.X. Xu, H.J. Zhou, C. Klingshirn, H. Kalt, ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal–semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2, 1661–1670 (2008)

    Google Scholar 

  10. G.H. Chen, B.S. Fu, C.J. Cai, M.Q. Lu, Y. Yang, S.H. Yi, C. Xu, H. Li, G.S. Wang, T. Zhang, A single-center experience of transplantation for liver transplant recipients with a failing graft. Transplant. Proc. 40, 1485–1487 (2008)

    Google Scholar 

  11. Z.H. Jing, J.H. Zhan, Fabrication, Gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 20, 4547–4551 (2008)

    Google Scholar 

  12. T.P. Chou, Q.F. Zhang, G.E. Fryxell, G.Z. Cao, Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater. 19, 2588–2592 (2007)

    Google Scholar 

  13. X.B. Wang, W.P. Cai, Y.X. Lin, G.Z. Wang, C.H. Liang, Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 20, 8582–8590 (2010)

    Google Scholar 

  14. J.H. Lee, B.S. Kim, J.C. Lee, S. Park, Removal of Cu++ ions from aqueous Cu-EDTA solution using ZnO nanopowder, in Eco-Materials Processing & Design Vi. ed. by H.S. Kim, S.-Y. Park, B.Y. Hur, S.W. Lee (Trans Tech Publications, Korea, 2005), pp. 510–513

    Google Scholar 

  15. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211–212, 317–331 (2012)

    Google Scholar 

  16. S. Bernal, J.J. Calvino, M.A. Cauqui, J.M. Gatica, C. Larese, J.A.P. Omil, J.M. Pintado, Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 50, 175–206 (1999)

    Google Scholar 

  17. H. Siddiqui, K.B.M. Ahmed, F. Sami, S. Hayat, Silicon Nanoparticles and Plants: Current Knowledge and Future Perspectives (Springer, Cham, 2020)

    Google Scholar 

  18. H. Rogalla, V. Römheld, Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ. 25, 549–555 (2002)

    Google Scholar 

  19. K.P.V. Da Cunha, C.W.A. do Nascimento, Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil Water. Air, Soil Pollut. 197(1–4), 323–330 (2009)

    ADS  Google Scholar 

  20. A. Hatamie, A. Khan, M. Golabi et al., Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39), 10913–10921 (2015)

    Google Scholar 

  21. S. Ojha, M. Roy, A. Chamuah, K. Bhattacharya, S. Bhattacharya, Electrical transport of chalcogenide glassy system: interpretation by Hunt’s model and microstructure. SN Appl. Sci. 2, 838 (2020). https://doi.org/10.1007/s42452-020-2518-5

    Article  Google Scholar 

  22. S. Bhattacharya, Phys. Lett. A 384, 12634 (2020)

    Google Scholar 

  23. S. Ojha, M. Roy, A. Chamuah, K. Bhattacharyad, S. Bhattacharya, Phys. Chem. Chem. Phys. 22(42), 24600–24613 (2020)

    Google Scholar 

  24. A. Acharya, K. Bhattacharya, C.K. Ghosh, A.N. Biswas, S. Bhattacharya, Mater. Sci. Eng., B 260, 114612 (2020). https://doi.org/10.1016/j.mseb.2020.114612

    Article  Google Scholar 

  25. R.M. El-Sharkawy, E.A. Allam, M.E. Mahmoud, Environ. Nanotechnol. Monitor. Manag 14, 100367 (2020)

    Google Scholar 

  26. E.J.S. Christy, R. Alagar, M. Dhanu, A. Pius, Environ. Nanotechnol. Monitor. Manag. 14, 100365 (2020)

    Google Scholar 

  27. S. Sobhanardakania, A. Jafari, R. Zandipak, A. Meidanchi, Process Saf. Environ. Prot. 120, 348–357 (2018)

    Google Scholar 

  28. I.A. Salem, M.A. Salem, M.A. El-Ghobashy, J. Mol. Liq. 248, 527–538 (2017)

    Google Scholar 

  29. M. Gu, L. Hao, Y. Wang, X. Li, Y. Chen, W. Lia, L. Liang, Chem. Phys. 534, 110750 (2020)

    Google Scholar 

  30. M. Dinari, A. Haghigh, Ultra. – Sonochem. 41, 75–84 (2018)

    Google Scholar 

  31. M.K. Aroua, F.M. Zuki, N.M. Sulaiman, J. Hazard. Mater. 147, 752–758 (2007)

    Google Scholar 

  32. T.D.C. Dantas, A.D. Neto, M.D.A. Moura, E.L.B. Neto, E.D. Paiva Telemaco, Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Langmuir 35(9), 2219–2224 (2001)

    Google Scholar 

  33. R. Ramadan, M.K. Ahmed, V. Uskoković, J. Alloys Compounds. (2021). https://doi.org/10.1016/j.jallcom.2020.157013

    Article  Google Scholar 

  34. M.K. Ahmed, S.F. Mansour, R. Ramadan, M. Afifi, S. Mostaf, S.I. El-dek, V. Uskoković, J. Water Process Eng. 34, 101090 (2020)

    Google Scholar 

  35. M.K. Ahmed, R. Ramadan, M. Afifi, A.A. Menaze, J. Mater. Res. Technol. 9(4), 8854–8866 (2020)

    Google Scholar 

  36. D.H.K. Reddy, Y.S. Yun, Coord. Chem. Rev. 315, 90–111 (2016)

    Google Scholar 

  37. Q. Zhang, J. Li, Q. Lina, C. Fang, Environ. Res. 188, 109698 (2020)

    Google Scholar 

  38. J. Wu, J. Wang, Y. Du, H. Li, Y. Yang, X. Jia, Appl. Catal. B 174–175, 435–444 (2015)

    Google Scholar 

  39. M. Gua, L. Haoa, Y. Wang, X. Lia, Y. Chen, W. Lia, L. Jiang, Chem. Phys. 534, 110750 (2020)

    Google Scholar 

  40. M.K. Ahmed, R. Ramadan, S.I. El-dek, V. Uskokovi, J. Alloy. Compd. 801, 70–81 (2019)

    Google Scholar 

  41. A.S. Khan, A.N. Hussain, L. Sidra, Z. Sarfraz, H. Khalid, M. Khan, F. Manzoor, L. Shahzadi, M. Yar, I.U. Rehman, Mater. Sci. Eng. C 80, 387–396 (2017)

    Google Scholar 

  42. G. Wu, X. Deng, J. Song, F. Chen, J. Photochem. Photobiol. B Biol. 178, 27–32 (2018)

    Google Scholar 

  43. W. Peng, H. Li, Y. Liu, S. Song, J. Molecul. Liquids 230, 496–504 (2017)

    Google Scholar 

  44. T.S. Badessa, E. Wakuma, A.M. Yimer et al., BMC Chem 14, 71 (2020)

    Google Scholar 

  45. A. Alemuab, B. Lemma, N. Gabbiye, M.T. Alula, M.T. Desta, Heliyon 4, e00682 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Ramadan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, R., El-Masry, M.M. Comparative study between CeO2/Zno and CeO2/SiO2 nanocomposites for (Cr6+) heavy metal removal. Appl. Phys. A 127, 876 (2021). https://doi.org/10.1007/s00339-021-05037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05037-z

Keywords

Navigation