Skip to main content
Log in

A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A remarkable feature of material damage induced by short-pulsed lasers is that the energy threshold becomes deterministic for sub-picosecond pulses. This effect, coupled with the advent of kHz and higher repetition rate chirped pulse amplification systems, has opened the field of femtosecond machining. Yet the mechanism of optical breakdown remains unclear. By examining the damage threshold as a function of polarization, we find that, contrary to established belief, multiphoton ionization plays an insignificant role in optical breakdown. The polarization independence, combined with the observed precise and uniform dielectric breakdown threshold even for nanometer-scale features, leads us to conclude that the fundamental mechanism is ‘self-terminated’ Zener-impact ionization, and that the deterministic and uniform damage threshold throughout the sample threshold stems from the uniform valence-electron density found in good-quality optical materials. By systematically exploring optical breakdown near threshold, we find that we can consistently machine features as small as 20 nm, demonstrating great promise for applications ranging from Micro ElectroMechanical Systems (MEMS) construction and microelectronics, to targeted disruption of cellular structures and genetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou: Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  2. E.N. Glezer, M. Milosavljevic, L. Huang, R.L. Finlay, H.H. Her, J.P. Callan, E. Mazur: ed. by P.F. Barbara (Springer, New York 1996) p. 157

  3. W. Kautek, J. Krueger: Mater. Sci. Forum 173174, 17 (1995)

  4. X. Liu, D. Du, G. Mourou: IEEE J. Quantum Electron. QE-33, 1706 (1997)

  5. C. Momma, B.N. Chichkov, S. Nolte, F. Alvensleben, A. Tunnermann, H. Welling, B. Wellengehausen: Opt. Commun. 129, 134 (1996)

    Article  ADS  Google Scholar 

  6. S. Nakamura, T. Okamoto, H. Kumagai, K. Midorikawa, M. Obara, K. Toyoda: Appl. Phys. Lett. 65, 1850 (1994)

    Article  ADS  Google Scholar 

  7. B. Stuart, M. Feit, A. Rubenchik, B. Shore, M. Perry: Phys. Rev. Lett. 74, 2248 (1995)

    Article  ADS  Google Scholar 

  8. D. Du, J. Squier, R. Kurtz, V. Elner, X. Liu, G. Gutmann, G. Mourou: ed. by P.F. Barbara (Springer, New York 1995) p. 254

  9. P. Pronko, S. Dutta, J. Squier, J. Rudd, D. Du, G. Mourou: Opt. Commun. 114, 106 (1995)

    Article  ADS  Google Scholar 

  10. K. Venkatakrishnan, B. Tran, P. Stanley, N. Sivakumar: J. Appl. Phys. 92, 1604 (2002)

    Article  ADS  Google Scholar 

  11. K. Konig, I. Riemann, W. Fritzsche: Opt. Lett. 26, 819 (2001)

    Article  ADS  Google Scholar 

  12. N. Bloembergen: IEEE J. Quantum Electron. QE-10, 375 (1974)

  13. J. Squier, F. Salin, G. Mourou, H.H. Her: Opt. Lett. 16, 324 (1991)

    Article  ADS  Google Scholar 

  14. K.K. Thornber: J. Appl. Phys. 52, 279 (1981)

    Article  ADS  Google Scholar 

  15. M. Lenzner, S. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz: Phys. Rev. Lett. 80, 4076 (1998)

    Article  ADS  Google Scholar 

  16. A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou: Phys. Rev. Lett. 82, 3883 (1999)

    Article  ADS  Google Scholar 

  17. D. Du: Doctoral Thesis, Physics, University of Michigan (1996)

  18. L. Lompré, G. Mainfray, C. Manus, J. Thebault: Phys. Rev. A 15, 1604 (1977)

    Article  ADS  Google Scholar 

  19. C. Schaffer, A. Brodeur, J. Garcia, E. Mazur: Opt. Lett. 26, 93 (2001)

    Article  ADS  Google Scholar 

  20. D. Du, X. Liu, G. Mourou: Appl. Phys. B 63, 617 (1996)

    Article  ADS  Google Scholar 

  21. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon: Phys. Rev. B 61, 437 (2000)

    Article  Google Scholar 

  22. L. Keldysh: Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  23. J. Fritzsche: J. Non-Cryst. Solids 6, 49 (1971)

    Article  ADS  Google Scholar 

  24. G.J. Brouhard, H.T. Schek, A.J. Hunt: IEEE Trans. Biomed. Eng. 50, 121 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Hunt .

Additional information

PACS

32.80.Rm; 77.22.Jp; 81.16.-c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joglekar , A., Liu , H., Spooner , G. et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77, 25–30 (2003). https://doi.org/10.1007/s00340-003-1246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1246-z

Keywords

Navigation