Skip to main content
Log in

Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The understanding of periodic flame instabilities belongs to the major challenges in modern combustion research and technology and is of special importance for lean premixed gas turbine combustion. This paper presents experimental investigations in a gas turbine model combustor using laser diagnostic techniques. A partially premixed CH4/air flame operated at a thermal power of 10 kW at atmospheric pressure and an overall equivalence ratio of 0.75, which exhibited thermoacoustic oscillations at a frequency of 290 Hz, was investigated. Phase-locked laser Raman scattering was applied in order to determine the major species concentrations, temperature, and mixture fraction. In addition, laser Doppler velocimetry (LDV) was used separately for the measurement of the axial and radial velocity components. The measurements revealed pronounced phase-dependent variations of the velocity and the temperature, species, and mixture fraction distributions. The combined Raman and LDV results also enabled the determination of molecular species fluxes which showed that the fuel and air supply rates both varied during an oscillation cycle by ±33% but with a phase shift of 80 between them. The correlations between temperature and mixture fraction revealed strong deviations from equilibrium composition and temperature, and their phase-dependent changes reflected the transport and mixing processes near the nozzle. The emphasis of the paper lies on the demonstration of the potential of phase-locked laser Raman scattering for the study of phenomena of periodic flame instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Gupta, D.G. Lilley, N. Syred: Swirl Flows (Abacus Press, Kent 1984)

  2. N. Syred, J.M. Beér: Combust. Flame 23, 143 (1974)

    Article  Google Scholar 

  3. R. Weber, J. Dugué: Prog. Energy Combust. Sci. 18, 349 (1992)

    Article  Google Scholar 

  4. S. Candel: Proc. Combust. Inst. 29, 1 (2002)

    Google Scholar 

  5. S.M. Correa: Proc. Combust. Inst. 27, 1793 (1998)

    Google Scholar 

  6. A.H. Lefebvre: Gas Turbine Combustion (Taylor & Francis, Philadelphia 1999)

  7. S.A. Greenwood: ASME Int. 41, 12 (2001)

    Google Scholar 

  8. J.W.S. Rayleigh: The Theory of Sound 2, 232 (MacMillan & Co., London 1896)

  9. N. Docquier, S. Candel: Prog. Energy Combust. Sci. 28, 107 (2002)

    Article  Google Scholar 

  10. J.M. Samaniego, T. Mantel: Combust. Flame 118, 537 (1999)

    Article  Google Scholar 

  11. C.O. Paschereit, E. Gutmark, W. Weisenstein: Proc. Combust. Inst. 27, 1817 (1998)

    Google Scholar 

  12. Y. Hardalupas, A. Selbach: Prog. Energy Combust. Sci. 28, 75 (2002)

    Article  Google Scholar 

  13. N. Docquier, F. Lacas, S. Candel: Proc. Combust. Inst. 29, 139 (2002)

    Google Scholar 

  14. S.Y. Lee, S. Seo, J.C. Broda, S. Pal, R.J. Santoro: Proc. Combust. Inst. 28, 775 (2000)

    Google Scholar 

  15. R. Giezendanner, O. Keck, P. Weigand, W. Meier, U. Meier, W. Stricker, W. Aigner: Combust. Sci. Technol. 175, 721 (2003)

    Article  Google Scholar 

  16. A.C. Eckbreth: Laser diagnostic for combustion temperature and species (Gordon and Breach, 1996)

  17. A.R. Masri, R.W. Dibble, R.S. Barlow: Prog. Energy Combust. Sci. 22, 307 (1996)

    Article  Google Scholar 

  18. R.S. Barlow, C.D. Carter, R.W. Pitz: In Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. Jeffries (Eds.) (Taylor & Francis, New York 2002)

  19. B. Lehmann, J. Helbig: In Lasermessmethoden in der Strömungsmechanik, D. Dopheide, H. Müller (Eds.) (PTB Verlag, Braunschweig 2003)

  20. X.R. Duan, P. Weigand, W. Meier, O. Keck, B. Lehmann, W. Stricker, M. Aigner: Prog. Comput. Fluid Dynamics 4, 175 (2004)

    Google Scholar 

  21. M. Cao, H. Eickhoff, F. Joos, B. Simon: ASME Propulsion and Energetics Panal, 70th Symposium, Crete, AGARD Conference Proceedings 922, 8.1 (1997)

  22. W. Meier, S. Prucker, M.H. Cao, W. Stricker: Combust. Sci. Technol. 118, 293 (1996)

    Google Scholar 

  23. S. Prucker, W. Meier, W. Stricker: Rev. Sci. Instrum. 65, 2908 (1994)

    Google Scholar 

  24. P. Weigand, R. Lückerath, W. Meier: http://www.dlr.de/VT/Datenarchiv (2002)

  25. R.W. Dibble, S.H. Starner, A.R. Masri, R.S. Barlow: Appl. Phys. B 51, 39 (1990)

    Article  Google Scholar 

  26. R.W. Bilger, S.H. Starner, R.J. Kee: Combust. Flame 80, 135 (1990)

    Article  Google Scholar 

  27. A.R. Masri, R.W. Dibble, R.S. Barlow: Prog. Energy Combust. Sci. 22, 307 (1996)

    Article  Google Scholar 

  28. O. Keck, W. Meier, W. Stricker, M. Aigner: Combust. Sci. Technol. 174, 117 (2002)

    Google Scholar 

  29. P. Weigand, W. Meier, X.R. Duan, W. Stricker, M. Aigner: Combust. Flame, submitted

  30. T. Lieuwen, B.T. Zinn: Proc. Combust. Inst. 27, 1809 (1998)

    Google Scholar 

  31. W. Meier, X.R. Duan, P. Weigand: Combust. Flame, submitted

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Meier.

Additional information

PACS

33.20; 39.30; 47.27; 47.70; 82.33; 82.40

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Meier, W., Weigand, P. et al. Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor. Appl. Phys. B 80, 389–396 (2005). https://doi.org/10.1007/s00340-004-1722-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1722-0

Keywords

Navigation