Skip to main content
Log in

Plasmonic light scattering from nanoscopic metal tips

  • Published:
Applied Physics B Aims and scope Submit manuscript

Linear light scattering by individual nanoscopic metal wire tips is investigated. Using evanescent-wave excitation, the spectral and polarization dependence of the emission are addressed. Choosing gold and tungsten as representative tip materials, intense scattering and a strongly plasmon-resonant behavior observed for gold contrasts a comparatively weak and spectrally flat response for tungsten. Spectral dependence and local-field enhancement are found to be sensitive to details of the structural parameters and can be described by a simple model. The results provide selection criteria for tips to be used in scattering-type near-field microscopy or photoemission in inelastic tunneling spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Stutzman, G.A. Thiele, Antenna Theory and Design (Wiley, New York, 1998)

    Google Scholar 

  2. W. Denk, D.W. Pohl, J. Vac. Sci. Technol. B 9, 510 (1991)

    Google Scholar 

  3. Y. Wang et al., Appl. Phys. Lett. 85, 2607 (2004)

    Google Scholar 

  4. V.A. Markel, T.F. George (Eds.) Optics of Nanostructured Materials (Wiley, New York, 2001)

  5. S. Kawata (Ed.) Topics in Applied Physics (Springer, Heidelberg, 2001).

  6. J.P. Fillard, Near Field Optics and Nanoscopy (World Scientific, Singapore, 1997)

    Google Scholar 

  7. N. Nilius, N. Ernst, H.-J. Freund, Phys. Rev. Lett. 84, 3994 (2000);

    Google Scholar 

  8. N. Nilius, N. Ernst, H.-J. Freund, Phys. Rev. B 65, 115421 (2002)

    Google Scholar 

  9. R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000)

    Google Scholar 

  10. A. Hartschuh, E.J. S$aAnchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003)

    Google Scholar 

  11. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Phys. Rev. Lett. 92, 220801 (2004)

    Google Scholar 

  12. N. Ocelic, R. Hillenbrand, Nat. Mater. 3, 606 (2004)

    Google Scholar 

  13. L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645 (1997)

    Google Scholar 

  14. J.T. Krug II, E.J. Sánchez, X.S. Xie, J. Chem. Phys. 116, 10895 (2002)

    Google Scholar 

  15. J.A. Porto, P. Johansson, S.P. Apell, T. Lόpez-Rίos, Phys. Rev. B 67, 085409 (2003)

    Google Scholar 

  16. C.C. Neacsu, G.A. Reider, M.B. Raschke, in preparation.

  17. L. Aigouy et al., Appl. Phys. Lett. 76, 397 (2000)

    Google Scholar 

  18. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  Google Scholar 

  19. G.C. Schatz, R.P.V. Duyne, in: Handbook of Vibrational Spectroscopy, editor J.M. Chalmers editor P.R. Griffiths (Eds.) (Wiley, Chichester, 2002).

    Google Scholar 

  20. F. de Fornel (Ed.), Evanescent Waves (Springer, Berlin, 2001).

  21. J.P. Ibe et al., J. Vac. Sci. Technol. A 8, 3570 (1990)

    Google Scholar 

  22. J. Gersten, A. Nitzan, J. Chem. Phys. 73, 3023 (1980)

    Google Scholar 

  23. C.K. Chen, T.F. Heinz, D. Ricard, Y.R. Shen, Phys. Rev. B 27, 1965 (1983)

    Google Scholar 

  24. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Google Scholar 

  25. E.D. Palik (Ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985).

  26. V.M. Shalaev, in: Springer Tracts in Modern Physics (Springer, Berlin, 2000)

    Google Scholar 

  27. Y.C. Martin, H.F. Hamann, H.K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001)

    Google Scholar 

  28. N. Calander, M. Willander, J. Appl. Phys. 92, 4878 (2002)

    Google Scholar 

  29. A. Wokaun, J.P. Gordon, P.F. Liao, Phys. Rev. Lett. 48, 957 (1982)

    Google Scholar 

  30. Concerning the notion of optical antennas for the tips, a dipole antenna behavior (l = nλ + λ/2 with n = 0,1,...) is expected only for very slender highly conductive rods with diameter small compared to their length $l$. Retardation and the considerable loss in the visible spectral region diminish the radiation efficiency.

  31. P. Johansson, Phys. Rev. B 58, 10823 (1998)

    Google Scholar 

  32. P.K. Aravind, R.W. Rendell, H. Metiu, Chem. Phys. Lett. 85, 396 (1982)

    Google Scholar 

  33. N. Nilius, N. Ernst, H.-J. Freund, Phys. Rev. B 65, 115421 (2002)

    Google Scholar 

  34. O. Sqalli, U.P. Hoffmann, F. Marquis-Weible, J. Appl. Phys. 92, 1078 (2002)

    Google Scholar 

  35. T. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar, J. Microsc. 2002, 72 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Raschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neacsu, C.C., Steudle, G.A. & Raschke, M.B. Plasmonic light scattering from nanoscopic metal tips. Appl. Phys. B 80, 295–300 (2005). https://doi.org/10.1007/s00340-005-1748-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1748-y

Keywords

Navigation