Skip to main content
Log in

Nonlinear diffraction in gratings based on polymer–dispersed TiO 2 nanoparticles

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this letter we report a simple technique to produce volume holographic gratings based on photopolymerizable composites containing TiO2 nanoparticles. Diffraction gratings with high refractive index modulation amplitude (up to 1.25 × 10−2) have been formed due to the periodic distribution of high refractive index nanoparticles in a low refractive index polymer matrix. The diffraction efficiency increases strongly on increasing the nanoparticle concentration. Taking the mixture with 10 wt.% TiO2 nanoparticles, gratings with high diffraction efficiency, low level of scattering and high transparency in the visible-wavelength range have been obtained. This will ultimately lead to different applications of diffractive optical elements based on nanocomposites. The dependence of the gratings’ diffraction efficiency on the intensity of probe laser pulses at 1064 nm has been explored. It is shown that the nonlinear response of the gratings is attributed mainly to the nonlinear properties of the TiO2 nanoparticles embedded in the polymer matrix. The mechanism of the grating formation and the reasons for the nonlinear behavior of the diffraction efficiency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, Annu. Rev. Mater. Sci. 30, 83 (2000)

    Article  CAS  Google Scholar 

  2. R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, T.J. Bunning, J. Appl. Phys. 96, 951 (2004)

    Article  CAS  Google Scholar 

  3. D.E. Luchetta, R. Karapinar, A. Manni, F. Simoni, J. Appl. Phys. 91, 6060 (2002)

    Article  Google Scholar 

  4. R.A. Vaia, C.L. Dennis, L.V. Natarajan, V.P. Tondiglia, D.W. Tomlin, T.J. Bunning, Adv. Mater. 13, 1570 (2001)

    Article  CAS  Google Scholar 

  5. A. Shishido, I.B. Divilansky, I.C. Khoo, T.S. Mayer, Appl. Phys. Lett. 79, 3332 (2001)

    Article  CAS  Google Scholar 

  6. N. Suzuki, Y. Tomita, T. Kojima, Appl. Phys. Lett. 81, 4121 (2002)

    Article  CAS  Google Scholar 

  7. C. Sanchez, M.J. Escuti, K. Bastiaansen, D.J. Broer, in 7th European Conference on Liquid Crystals (ECLC2003-JACA), p. 154, Spain, 2003

  8. J. Chen, P.J. Bos, H. Vithana, D.L. Jonson, Appl. Phys. Lett. 67, 2588 (1995)

    Article  CAS  Google Scholar 

  9. K. Tanaka, K. Kato, M. Date, Jpn. J. Appl. Phys. Part 2 38, l277 (1999)

    Article  CAS  Google Scholar 

  10. L.H. Domash, G.P. Crowford, A.C. Aschmead, R.T. Smith, M.M. Popovich, J. Storey, Proc. SPIE 4107, 46 (2000)

    Google Scholar 

  11. Y.-Q. Lu, F. Du, S.-T. Wu, J. Appl. Phys. 95, 810 (2004)

    Article  CAS  Google Scholar 

  12. R. Jakubiak, T.J. Bunning, R.A. Vaia, SPIE Nanotechnol. e-Bull. 1.1, 3 (2004)

    Google Scholar 

  13. R. Jakubiak, T.J. Bunning, R.A. Vaia, V.P. Tondiglia, L.V. Natarajan, Adv. Mater. 15, 241 (2003)

    Article  CAS  Google Scholar 

  14. W.J. Tomlinson, E.A. Chandross, H.I. Weber, G.D. Aumiller, Appl. Opt. 15, 534 (1976)

    CAS  Google Scholar 

  15. E.S. Gulnazarov, T.N. Smirnova, E.A. Tikhonov, Proc. SPIE 1238, 235 (1989)

    Google Scholar 

  16. T.N. Smirnova, Proc. SPIE 3733, 364 (1999)

    Google Scholar 

  17. O.V. Sakhno, T.N. Smirnova, Opt. Spectrosc. 85, 950 (1998) (in Russian)

    Google Scholar 

  18. G.M. Karpov, V.V. Obukhovsky, T.N. Smirnova, V.V. Lemeshko, Opt. Commun. 174, 391 (2000)

    Article  CAS  Google Scholar 

  19. R.J. Nussbaumer, W.R. Caseri, P. Smith, Th. Tervoort, Macromol. Mater. Eng. 288, 44 (2003)

    Article  CAS  Google Scholar 

  20. R.J. Nussbaumer, W.R. Caseri, Th. Tervoort, P. Smith, J. Nanopart. Res. 4, 319 (2002)

    Google Scholar 

  21. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  22. Q.F. Zhau, Q.Q. Zhang, J.X. Zhang, L.Y. Zhang, X. Yao, Mater. Lett. 31, 41 (1997)

    Article  Google Scholar 

  23. S.X. Wang, L.D. Zhang, H. Su, Z.P. Zhang, G.H. Li, G.W. Meng, J. Zhang, Y.W. Wang, J.C. Fan, T. Gao, Phys. Lett. A 281, 59 (2001)

    Article  CAS  Google Scholar 

  24. H.I. Elim, W. Ji, A.H. Yuwono, J.M. Xue, J. Wang, Appl. Phys. Lett. 82, 2691 (2003)

    Article  CAS  Google Scholar 

  25. V. Gayvoronsky, F. Galas, T. Shepelyavyy, Th. Dittrich, V. Timoshenko, S. Nepijko, M.S. Brodyn, F. Koch, Appl. Phys. B 80, 97 (2005)

    Article  CAS  Google Scholar 

  26. P. Sathy, A. Penzkofer, Appl. Phys. B 61, 127 (1995)

    Article  Google Scholar 

  27. Y. Watanabe, M. Ohnishi, T. Tsuchiga, Appl. Phys. Lett. 66, 3421 (1995)

    Google Scholar 

  28. L.E. Brus, J. Chem. Phys. 79, 5566 (1983)

    Google Scholar 

  29. S. Schmitt-Rink, D.A.B. Miller, D.S. Chemla, Phys. Rev. B 35, 8113 (1987-II)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sakhno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, T.N., Sakhno, O.V., Bezrodnyj, V.I. et al. Nonlinear diffraction in gratings based on polymer–dispersed TiO 2 nanoparticles. Appl. Phys. B 80, 947–951 (2005). https://doi.org/10.1007/s00340-005-1873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1873-7

PACS

Navigation