Skip to main content
Log in

Development of a fast temperature sensor for combustion gases using a single tunable diode laser

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The 12 best NIR water transition line pairs for temperature measurements with a single DFB laser in flames are determined by systematic analysis of the HITRAN simulation of the water spectra in the 1–2 μm spectral region. A specific line pair near 1.4 μm was targeted for non-intrusive measurements of gas temperature in combustion systems using a scanned-wavelength technique with wavelength modulation and 2f detection. This sensor uses a single diode laser (distributed-feedback), operating near 1.4 μm and is wavelength scanned over a pair of H2O absorption transitions (7154.354 cm-1 & 7153.748 cm-1) at a 2 kHz repetition rate. The wavelength is modulated (f=500 kHz) with modulation amplitude a=0.056 cm-1. Gas temperature is inferred from the ratio of the second harmonic signals of the two selected H2O transitions. The fiber-coupled-single-laser design makes the system compact, rugged, low cost and simple to assemble. As part of the sensor development effort, design rules were applied to optimize the line selection, and fundamental spectroscopic parameters of the selected transitions were determined via laboratory measurements including the temperature-dependent line strength, self-broadening coefficients, and air-broadening coefficients. The new sensor design includes considerations of hardware and software to enable fast data acquisition and analysis; a temperature readout rate of 2 kHz was demonstrated for measurements in a laboratory flame at atmospheric pressure. The combination of scanned-wavelength and wavelength-modulation minimizes interference from emission and beam steering, resulting in a robust temperature sensor that is promising for combustion control applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Arroyo, R.K. Hanson: Appl. Opt. 32, 6104 (1993)

    Google Scholar 

  2. E.R. Furlong, D.S. Baer, R.K. Hanson: Proc. Comb. Inst. 27, 103 (1998)

    Google Scholar 

  3. E.R. Furlong, R.M. Mihalcea, M.E. Webber, D.S. Baer, R.K. Hanson: AIAA J. 37, 732 (1999)

    Google Scholar 

  4. M.G. Allen, E.R. Furlong, R.K. Hanson: In: Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries (Eds.), (Taylor and Francis, NY 2002) pp. 479

  5. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum: Proc. Comb. Inst. 28, 423 (2000)

    Google Scholar 

  6. H. Teichert, T. Fernholz, V. Ebert: Appl. Opt. 42, 12 2043 (2003)

    Google Scholar 

  7. R.M. Mihalcea, D.S. Baer, R.K. Hanson: Proc. Comb. Inst. 27, 95 (1998)

    Google Scholar 

  8. S.T. Sanders, D.W. Mattison, J.B. Jeffries, R.K. Hanson: Opt. Lett. 26, 1568 (2001)

    Google Scholar 

  9. M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson: Proc. Comb. Inst. 28. 407 (2000)

    Google Scholar 

  10. D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield: AIAA J. 34, 489 (1996)

    Google Scholar 

  11. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson: Meas. Sci. Technol. 14, 1459 (2003)

    Article  Google Scholar 

  12. J.T.C. Liu, J.B. Jeffries, R.K. Hanson: Appl. Phys. B 78, 503 (2004)

    Article  Google Scholar 

  13. T. Fernholz, H. Teichert, V. Ebert: Appl. Phys. B 75, 229 (2002)

    Article  Google Scholar 

  14. L.C. Philippe, R.K. Hanson: Appl. Optl. 32, 6090 (1993)

    Google Scholar 

  15. D.T. Cassidy, J. Reid: Appl. Opt. 21, 1185 (1982)

    Google Scholar 

  16. A.M. Bullock, A.N. Dharamsi, W.P. Chu, L.R. Poole: Appl. Phys. Lett. 70, 1195 (1997)

    Article  Google Scholar 

  17. D.C. Hovde, J.T. Hodges, G.E. Scace, J.A. Silver: Appl. Opt. 40, 829 (2001)

    Google Scholar 

  18. T. Aizawa: Appl. Opt. 40, 4894 (2001)

    Google Scholar 

  19. P. Kluczynski, A Lindberg, O. Axner: Appl. Opt. 40, 783 (2001); Appl. Opt. 40, 794 (2001)

    Google Scholar 

  20. J. Reid, D. Labrie: Appl. Phys. B 26, 203(1981)

    Article  Google Scholar 

  21. A.N. Dharamsi, A.M. Bullock: Appl. Phys. B 63, 283 (1996)

    Article  Google Scholar 

  22. H.J. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson: submitted to App. Opt. June, 2005

  23. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K. Chance, K. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi: J. Quant. Spectrosc. Radiat. Transfer 60, 665 (1998)

    Article  Google Scholar 

  24. L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino: J. Quant. Spectrosc. Radiat. Transfer 82, 5 (2003)

    Article  Google Scholar 

  25. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner: J. Quant. Spectrosc. Radiat. Transfer 96, (2005) in press

  26. http: //cfa-www.harvard.edu/HITRAN /

  27. X. Ouyang, P.L. Varghese: Appl. Opt. 29 4884 (1990)

    Google Scholar 

  28. E.E. Whiting: J. Quant. Spectrosc. Radiat. Transfer 16 611 (1976)

    Google Scholar 

  29. S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson: Appl. Opt. 40 4405 (2001)

    Google Scholar 

  30. X. Liu, J.B. Jeffries, R.K. Hanson: Strategies for Measurement of Non-Uniform Temperature Distributions using Line-of-Sight Absorption Spectroscopy. 44th Aerospace Sciences Meeting, Reno, NV, Jan. 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.B. Jeffries.

Additional information

PACS

42.62.Fi; 42.55.Px; 42.60.Fc; 39.30+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Jeffries, J. & Hanson, R. Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Appl. Phys. B 81, 711–722 (2005). https://doi.org/10.1007/s00340-005-1934-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1934-y

Keywords

Navigation