Skip to main content
Log in

Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium niobate crystal and is tunable over the 3.9 to 4.8 μm infrared wavelength region. With the strong rotational-vibrational absorption band of CO2 at 4.23 μm, it is possible to detect CO2 down to 7 parts per billion volume using 20 mW of the OPO beam. This detection sensitivity was achieved by adding 4% of SF6 gas to the atmospheric gas mixture to overcome the slow vibrational relaxation of the excited CO2 levels. The usefulness of this system is demonstrated by real-time measuring of the fluctuations of the CO2 concentration in the breath of a single ant (Lasius niger) and individual fruit flies (Drosophila melanogaster).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harren FJM, Cotti G, Oomens J, te Lintel Hekkert S (2000) Photoacoustic Spectroscopy in Trace Gas Monitoring, In Encyclopedia of Analytical Chemistry, Meyers RA (ed). Wiley, Chichester, pp 2203–2226

    Google Scholar 

  2. Berden G, Peters R, Meijer G (2000) Int. Rev. Phys. Chem. 19:565

    Article  Google Scholar 

  3. Tittel FK, Richter D, Fried A (2003) Appl. Phys. 89:445

    Google Scholar 

  4. Bijnen FGC, Reuss J, Harren FJM (1996) Rev. Sci. Instrum. 67:2914

    Article  Google Scholar 

  5. Bijnen FGC, Zuckermann H, Harren FJM, Reuss J (1998) Appl. Opt. 37:3345

    Google Scholar 

  6. Paldus BA, Spence TG, Zare RN, Oomens J, Harren FJM, Parker DH, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (1999) Opt. Lett. 24:178

    Google Scholar 

  7. Nelson DD, Shorter JH, McManus JB, Zahniser MS (2002) Appl. Phys. B 75:343

    Article  Google Scholar 

  8. Kosterev AA, Tittel FK (2002) IEEE J. Quantum Electron. QE-38:582

    Article  Google Scholar 

  9. Van Herpen M, Li S, Bisson SE, Harren FJM (2002) Appl. Phys. Lett. 81:1157

    Article  Google Scholar 

  10. van Herpen M, Bisson SE, Harren FJM (2003) Opt. Lett. 28:2497

    PubMed  Google Scholar 

  11. Rothman LS, Barbe A, Benner DC, Brown LR, Camy-Peyret C, Carleer MR, Chance K, Clerbaux C, Dana V, Devi VM, Fayt A, Flaud JM, Gamache RR, Goldman A, Jacquemart D, Jucks KW, Lafferty WJ, Mandin JY, Massie ST, Nemtchinov V, Newnham DA, Perrin A, Rinsland CP, Schroeder J, Smith KM, Smith MAH, Tang K, Toth RA, van der Auwera J, Varanasi P, Yoshino K (2003) J. Quant. Spectrosc. Radiat. Transfer 82:5

    Article  Google Scholar 

  12. Bosenberg WR, Drobshoff A, Alexander JI (1996) Opt. Lett. 21:1336

    Google Scholar 

  13. Myers LE, Bosenberg WR (1997) IEEE J. Quantum Electron. QE-33:1663

    Article  Google Scholar 

  14. Powers PE, Kulp TJ, Bisson SE (1998) Opt. Lett. 23:159

    Google Scholar 

  15. Klein ME, Laue CK, Lee D-H, Boller K-J, Wallenstein R (2000) Opt. Lett. 25:490

    Google Scholar 

  16. van Herpen WMMJ, te Lintel Hekkert S, Bisson SE, Harren FJM (2002) Opt. Lett. 27:640

    Google Scholar 

  17. van Herpen WMMJ, Li S, Bisson SE, te Lintel Hekkert S, Harren FJM (2002) Appl. Phys. B 75:329

    Article  Google Scholar 

  18. Lowenthal DD (1998) IEEE J. Quantum Electron. QE-34:1356

    Article  Google Scholar 

  19. Loza-Alvarez P, Brown CTA, Reid DT, Sibbett W, Missey M (1999) Opt. Lett. 24:1523

    Google Scholar 

  20. Watson MA, O’Connor MV, Lloyd PS, Shepherd DP, Hanna DC, Gawith CBE, Ming L, Smith PGR, Balachninaite O (2002) Opt. Lett. 27:2106

    Google Scholar 

  21. Rooth RA, Verhage AJL, Wouters LW (1990) Appl. Opt. 29:3643

    Google Scholar 

  22. Buchwald MI, Bauer SH (1972) J. Phys. Chem. 76:3108

    Article  Google Scholar 

  23. Lighton JRB, Garrigan D (1995) J. Exp. Biol. 198:1613

    PubMed  Google Scholar 

  24. Kestler A (1985) Respiration and respiratory water loss, In Environmental Physiology and Biochemistry of Insects, Hoffmann KH (ed). Springer, Berlin, pp 137–183

    Google Scholar 

  25. Lighton JRB (1994) Physiol. Zool. 67:142

    Google Scholar 

  26. Williams AE, Rose MR, Bradley TJ (1997) J. Exp. Biol. 200:615

    PubMed  Google Scholar 

  27. Popp A, Muller F, Kuhnemann F, Schiller S, von Basum G, Dahnke H, Hering P, Murtz MA (2002) Appl. Phys. B 75:751

    Article  Google Scholar 

  28. van Herpen WMMJ, Bisson SE, Ngai AKY, Harren FJM (2004) Appl. Phys. B 78:281

    Article  Google Scholar 

  29. Kulp TJ, Bisson SE, Bambha RP, Reichardt TA, Goers UB, Aniolek KW, Kliner DAV, Richman BA, Armstrong KM, Sommers R, Schmitt R, Powers PE, Levi O, Pinguet T, Fejer M, Koplow JP, Goldberg L, Mcrae TG (2002) Appl. Phys. B 75:317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.J.M. Harren.

Additional information

PACS

42.65.Yj; 82.80.Kq; 42.62.Fi

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Herpen, M., Ngai, A., Bisson, S. et al. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects. Appl. Phys. B 82, 665–669 (2006). https://doi.org/10.1007/s00340-005-2119-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2119-4

Keywords

Navigation