Skip to main content
Log in

Electromagnetic field correlations near a surface with a nonlocal optical response

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field’s degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas–Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Planck, Verh. Dtsch. Phys. Ges. Berlin 2, 237 (1900)

    Google Scholar 

  2. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Elements of Random Fields, Vol. 3, Principles of Statistical Radiophysics (Springer, Berlin, 1989)

    MATH  Google Scholar 

  3. F. Gori, D. Ambrosini, V. Bagini, Opt. Commun. 107, 331 (1994)

    Article  ADS  Google Scholar 

  4. R. Carminati, J.-J. Greffet, Phys. Rev. Lett. 82, 1660 (1999)

    Article  ADS  Google Scholar 

  5. C. Henkel, K. Joulain, R. Carminati, J.-J. Greffet, Opt. Commun. 186, 57 (2000)

    Article  ADS  Google Scholar 

  6. O.D. Stefano, S. Savasta, R. Girlanda, Phys. Rev. A 60, 1614 (1999)

    Article  ADS  Google Scholar 

  7. R.R. Chance, A. Prock, R. Silbey, In: Advances in Chemical Physics XXXVII, ed. by I. Prigogine, S.A. Rice (Wiley and Sons, New York, 1978) pp. 1–65

  8. R.C. Dunn, Chem. Rev. 99, 2891 (1999)

    Article  Google Scholar 

  9. F. Chen, U. Mohideen, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. Lett. 88, 101801 (2002)

    Article  ADS  Google Scholar 

  10. J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I.H. Wilson, J. Appl. Phys. 76, 7209 (1994)

    Article  ADS  Google Scholar 

  11. J.B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999)

    ADS  Google Scholar 

  12. J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Appl. Phys. Lett. 78, 2931 (2001)

    Article  ADS  Google Scholar 

  13. A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005)

    Article  ADS  Google Scholar 

  14. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (University Press, Cambridge, 1995)

    Book  Google Scholar 

  15. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Phys. Rev. B 68, 245405 (2003)

    Article  ADS  Google Scholar 

  16. T. Setälä, M. Kaivola, A.T. Friberg, Phys. Rev. Lett. 88, 123902 (2002)

    Article  ADS  Google Scholar 

  17. J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Opt. Lett. 29, 1536 (2004)

    Article  ADS  Google Scholar 

  18. C. Girard, C. Joachim, S. Gauthier, Rep. Prog. Phys. 63, 893 (2000)

    Article  ADS  Google Scholar 

  19. C. Henkel, Coherence Theory of Atomic de Broglie Waves and Electromagnetic Near Fields (Universitätsverlag, Potsdam, 2004)

    Google Scholar 

  20. S. Scheel, L. Knöll, D.-G. Welsch, Acta Phys. Slov. 49, 585 (1999)

    Google Scholar 

  21. D. Polder, M.V. Hove, Phys. Rev. B 4, 3303 (1971)

    Article  ADS  Google Scholar 

  22. C.H. Henry, R.F. Kazarinov, Rev. Mod. Phys. 68, 801 (1996)

    Article  ADS  Google Scholar 

  23. H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)

    Article  ADS  Google Scholar 

  24. W. Eckhardt, Opt. Commun. 41, 305 (1982)

    Article  ADS  Google Scholar 

  25. K.L. Kliewer, R. Fuchs, Adv. Chem. Phys. 27, 355 (1974)

    Google Scholar 

  26. J.M. Wylie, J.E. Sipe, Phys. Rev. A 30, 1185 (1984)

    Article  ADS  Google Scholar 

  27. M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, 9th ed. (Dover Publications Inc., New York, 1972)

  28. E. Palik (Ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985)

    Google Scholar 

  29. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)

    MATH  Google Scholar 

  30. G.W. Ford, W.H. Weber, Phys. Rep. 113, 195 (1984)

    Article  ADS  Google Scholar 

  31. K.L. Kliewer, R. Fuchs, Phys. Rev. 172, 607 (1968)

    Article  ADS  Google Scholar 

  32. G.S. Agarwal, Phys. Rev. A 11, 230 (1975)

    Article  ADS  Google Scholar 

  33. I. Dorofeyev, H. Fuchs, J. Jersch, Phys. Rev. E 65, 026610 (2002)

    Article  ADS  Google Scholar 

  34. I.A. Larkin, M.I. Stockman, M. Achermann, V.I. Klimov, Phys. Rev. B 69, 121403(R) (2004)

    Article  ADS  Google Scholar 

  35. V.B. Svetovoy, R. Esquivel, Phys. Rev. E 72, 036113 (2005)

    Article  ADS  Google Scholar 

  36. B.E. Sernelius, Phys. Rev. B 71, 235114 (2005)

    Article  ADS  Google Scholar 

  37. P.J. Feibelman, Prog. Surf. Sci. 12, 287 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Henkel.

Additional information

PACS

42.25.Kb; 07.79.Fc; 44.40.+a; 78.20.-e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkel, C., Joulain, K. Electromagnetic field correlations near a surface with a nonlocal optical response. Appl. Phys. B 84, 61–68 (2006). https://doi.org/10.1007/s00340-006-2219-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2219-9

Navigation